<

趣祝福 · 范文大全 · 平方根课件

平方根课件汇总

时间:2023-12-03 平方根课件

【#范文大全# #平方根课件汇总#】上课之前,准备好教案和课件是非常重要的。撰写教案和课件是每位老师都需要做的任务。 教案和课件的编写对于新老师提高教学技能和水平来说是基础性的工作。那么,什么样的教案和课件才算是优秀的呢?经过趣祝福编辑的认真研究,本文《平方根课件》是值得推荐的,建议您保留本文以备参考!

平方根课件 篇1

对于数学课堂教学,我们教师要时刻关注学生的参与程度、合作交流的意识、情感、态度的发展以及对问题探讨的深度与广度等,例如在探讨一个数的平方根时,学生就提出了“是什么数”的`问题,对于出现这种情况,作为老师这是意料之中的情况,但是从学生的角度这就足以说明学生是在“数学地”思考问题,所以在设计同一个问题时,教师要设计不同层次的问题,力求每一个学生都“有题可答”,真正意义上让每一个学生都能得到不同程度的发展,培养其学习数学的自信心。在教学过程中学生常见的几种错误主要有:在求数a的平方根时,学生往往会用连等的式子来表示,错在符号乱用,添加或缺少正负号,导致等式无法成立。

改进措施:

(1)在以后的教学过程中要通过练习发现学生存在的问题,并对一些典型的错题进行分析讲解,通过练习规范学生的解题格式,提高学生解决实际问题的能力。

(2)注重尖子生时间分配,重视思维能力的培养。

(3)强调书写的规范化。

(4)可选择适当方法调动学生学习兴趣,使学生爱学、乐学。

平方根课件 篇2

平方根是实数的起始课,又是学习实数的第一节课,内容涉及的知识点不多,知识的切入点比较低,而新课程将其建立在以学内容有理数的基础上,加强与前面的知识点的联系。我选择这节课,突出实数与有理数的联系。

针对七年级学生有一定的自学、探索能力小。借助学生学习的优势,脑和手充分动起来。学生间互相探讨,积极性也被充分调动起来。

让学生通过实际例子,体会算术平方根的定义,通过剪正方形得出面积为2的大正方形的边长,从而解决了生活实际问题,让学生体会生活中的数学。

在本节课中,本着以学生为主,突出重点的意图,结合学生的实际情况,在引入算术平方根的定义时,让学生发掘生活中已知面积而求边长的问题,把实际问题抽象成数学问题,通过例题和练习让学生总结,并关注算术平方根的写法格式,为了突破本节课的难点和重点,真正做到以学生为本,抓住课堂45分钟,突出效率教学,我在准备了操作题,让学生更加体会算术平方根的含义,将想和做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。

本节课的不足:1.没有充分利用已有的图形调动学生的积极性,在做面积为2的大正方形时,我没有让学生看书,这样就在我的讲解中度过了,如果让学生先看书然后在动手操作,那样学生的成就感就得到了体现。2.学生的层次不同,对于基础好的就吃不饱,对于C组的同学满足不了他们的学习需求。

建议:把下面的平方根先上,那样在解方程时就不会出现那么多的正负的问题。

平方根课件 篇3

一、教材分析:

1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根,算术平方根说课稿。

2、 教材的地位与作用

本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。

3、 教学重点、难点

教学的重点:算术平方根概念的引入

教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题,

二、 教学目标设计:

知识与技能:1、说出正数a的算数平方根的定义,记住零的算术平方根;

2、会表示一个非负数的算术平方根;

3、知道非负数的算术平方根是非负数;

数学思考:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维;

解决问题:通过学生的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

情感态度:通过学习算术平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。

三、教学分析:

1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。

2. 相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究、小组合作学习,教案《算术平方根说课稿》。

3. 具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者、实践者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。

四、教学过程设计:

1、创设情境 引入新课

结合通过“神州七号载人飞船发射成功”引入新课,从而激发兴趣,增强学生的学习热情。

2、师生互动,学习新知

以已知正方形的'面积,求边长。通过分析问题,引导学生归纳算术平方根的概念。在此基础上师通过“想一想”“试一试”“练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有算术平方根,算术平方根具有双重非负性。

3、动手操作 学以致用

从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。

4、随堂检测 反思教学

通过小测试,及时检测学生对本课知识的掌握情况,提高学生的竞争意识,同时反思教学,查漏补缺.

5、提出疑问 留下伏笔

培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。

说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程,坚持以学生为中心以操作为重要手段,以感悟为学习的目的,以发现为宗旨,重视学生的自主探索、亲身实践、合作交流学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。

平方根课件 篇4

最新优质课初中数学平方根教案设计5篇

数学能够促进世界科学的发展,数学教育对我们具有重要的作用。作为一名数学老师,不妨写一篇数学教案和我们分享吧。你是否在找正准备撰写“优质课初中数学平方根教案设计”,下面小编收集了相关的素材,供大家写文参考!

优质课初中数学平方根教案设计1

教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7 ②-6和-1③-6和-36④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

优质课初中数学平方根教案设计2

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教具准备:

课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:

2块平行四边形彩色纸片、三角板、直尺、剪刀

教学过程:

师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

一、情境创设,揭示课题

1、创设故事情境

同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

2、复习旧知,揭示课题

(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

二、自主探究,操作交流

1、大胆猜想

师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

(两个图形的面积相等,都是18平方米……) (知识点)

师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

(师出示一个平行四边形纸板,生看图猜测。)

生汇报猜测结果,师随机板书。

师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

2、操作验证

提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

(师参与到小组活动中,巡视指导。)

3、汇报交流

师:你是怎样做的呢?谁愿意上来演示并说一说呢?

(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

生:长方形。

师:怎样剪才能拼成长方形呢?

师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

生再次操作。

4、发现方法

师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

(电脑显示思考题)

小组讨论交流。

(1)平行四边形转化成长方形,面积变了吗?

(2)方形后的长和宽分别与平行四边形的底和高有什么关系?

(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

实物图片展示拼剪过程同时回答上面的讨论题。

学生一边说教师一边板书:长方形面积=长×宽

平行四边形面积=底×高 (知识点)(能力点)

5、回顾公式推导过程

(1)结合课件演示各部分间的相等关系。

(2)指名说说平行四边形面积公式是怎么样推导出来的?

6、学习用字母表示公式。

师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

7、记忆公式

闭上眼睛记记公式。

如果要求平行四边形的面积,必需要知道哪些条件呢?

8、尝试运用

师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

(出示喜羊羊的草地图)(说明格式要求)学生独立完成。

三、深化运用,加深理解

通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

1、算出下列平行四边形的面积 (考查点)

课件出示图形

(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

2、选一选。(题目见课件) (考查点、能力点)

(强调:平行四边形的面积=底×底边对应的高)

你有什么结论?(等底等高的两个平行四边形面积相等。)

3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

(考查点、能力点)

有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

四、解决问题,应用拓展

1、小小设计师

羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

五、总结全课,提高认识

这节课我们学习了什么知识?是怎么来学会这些知识的?

优质课初中数学平方根教案设计3

一、 教材结构与内容简析

在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。

二、 教学目标

根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

三、教学建议

(一)重点、难点分析

本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

备注:教学过程我主要说第一小节---去括号

(三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

优质课初中数学平方根教案设计4

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

优质课初中数学平方根教案设计5

总体说明:

完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用.

(2)了解完全平方公式的几何背景.

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

(2)发展学生的数形结合的数学思想.

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2–4a+22

活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

第三环节:推广到一般情况,形成公式

活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义.

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央.

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9

②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+

活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

第八环节:随堂练习

活动内容:计算:①;②;③(n+1)2–n2

活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

第九环节:学生PK

活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

第十环节:学生反思

活动内容:通过今天这堂课的学习,你有哪些收获?

收获1:认识了完全平方公式,并能简单应用;

收获2:了解了两数和与两数差的完全平方公式之间的差异;

收获3:感受到数形结合的数学思想在数学中的作用.

活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

第十一环节:布置作业:

课本P43习题1.13

初中数学教育方案相关文章:

平方根课件 篇5

一、教材分析

1、说教材

《算术平方根》是九年制义务教育人教版七年级下册第十章《实数》的第一节内容,与旧教材相比,它在这里先讲算术平方根再去学习平方根。为后学习平方根奠定一定基础,同时也把数从有理数拓展到无理数。这一节的教材编写思路是由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。

2、教学目标和要求

根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:

知识技能 : 了解算术平方根的概念,会求正数的算术平方根。

数学思考 : 通过探索 的大小,培养估算意识。

解决问题 : 通过拼正方形的活动,体验解决问题方法的多样性,展 形象思维。

情感态度 : 通过学习算术平方根,认识数学与生活的密切关系。通过探究活动,锻炼意志,建立自信心,提高学习热情。

3、教学的重点与难点

重点:算术平方根的概念,感受无理数。

难点:探究 大小的过程

二、说教学理念

培养学生的合作探究精神,自主学习、创新精神是新课程标准的重要理念。课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。

三、说教法

本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是通过拼图法得出 。再通过渐进法得出 的大小。教师采用点拨的方法,启发学生主动思考,尝试用多种取值来得出 的大小,进而引出无理数。使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。

四、说学法

课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

五、说教学过程

(一) 创设情境、激发情趣

通过工厂要做一批面积为4平方米和2平方米的正方形模板,老板为了赶产品提出来加工资,由面积是2平方米的正方形模板的边长。巧妙的引入算术平方根。使学生能认识到学好本节的作用,又能激发他们的学习兴趣。

(二) 动手操作、初步感知

通过一个正数的平方,求出面积为1、4、9、16、25、4/25的正方形的边长,学生很轻松地就可以答出。进而巧妙的介绍算术平方根的概念,进入新知。

(三) 实践说明、深入新知

在进入算术平方根的概念之后,我们去试作加深对算术平方根的知识,学生在老师的引导之下的做一相关的例题。

(四) 巩固练习、

通过习题 巩固算术平方根的知识。

(五) 启发诱导、实际运用、拓展新知

让学生动手去完由两面积为1的小正方形去拼一面积为2的大正方形,并求出大正方形的边长。由所学知识大正方形的边长应为 。自然地过渡到探究 大小,让同学们先估计 的大小。教师从中他们估计不同的值通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,团结合作的创新精神。(在此探究过程中要用到渐近法)进而得出 是无理数。

(六) 反馈矫正、作业

通过课堂练习,强化学生对这节课的掌握,为此我设计了两道习题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可以激发学生学习数学的热情。第二道题采取了客观题的形式,难度中等,使学生掌握概念并能简单运用,可以提高学生的说理能力,可挑选中等成绩的学生起立回答。便于了解学生掌握的总体情况。

六、课堂小结

采用用先让学生归纳补充,然后教师再补充的方式进行:这节课我们学了什么知识?你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。

总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究,合作学习来主动发现,实现师生互动。通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,学会生活才能使自己真正成为一名受学生欢迎的好老师。

平方根课件 篇6

1.理解一个数和算术的意义;

2.理解根号的意义,会用根号表示一个数的和算术;

3.通过本节的训练,提高学生的逻辑思维能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

1.已知一正方形面积为50平方米,那么它的边长应为多少?

2.已知一个数的平方等于1000,那么这个数是多少?

3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

1.( )2=9; 2.( )2 =0.25;

3.

5.( )2=0.0081.

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

如果一个数的平方等于a,那么这个数就叫做a的(二次方根).

±0.5是0.25的;

0的是0;

±0.09是0.0081的.

由此我们看到+3与-3均为9的,0的是0,下面看这样一道题,填空:

学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有的.下面总结一下的性质(可由学生总结,教师整理).

1.一个正数有两个,它们互为相反数.

2.0有一个,它是0本身.

求一个数a的的运算,叫做开平方的运算.

由练习我们看到+3与-3的平方是9,9的是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

一个正数a的正的,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的用符号“- ”表示,a的合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的也可记作“ ”读作“正、负根号a”.

平方根课件 篇7

平方根美术教案:探索数学与艺术融合的奇妙魅力

引言:

数学和艺术,在看似迥然不同的领域中,却都蕴含着无限的美感和智慧。然而,将这两者相结合,你是否能够想象出一种全新的学习方式和视觉盛宴呢?本篇文章将为您详细介绍一种独特的教学方法——平方根美术教案,通过对数学概念中的平方根进行深入剖析,激发学生的创造力和想象力,让他们通过艺术表达和呈现复杂的数学概念,实现数学与艺术的完美结合。

一、平方根的概念与特点讲解(200字)

在平方根美术教案中的第一部分,我们将详细讲解平方根的概念和特点。学生们将了解到平方根的基本定义,即一个数的平方根是指与该数相乘后得到该数的数值。我们还将解释平方根的符号表示以及如何求解平方根。通过简洁明了的讲解,学生们将对平方根有更深入的认识与理解。

二、探索平方根的几何意义(300字)

在平方根美术教案的第二部分,我们将引导学生们通过几何视角去认识平方根的概念。通过绘制平方根的图形,并以实际物体为例子进行解释,学生们将更直观地理解平方根的意义。例如,利用纸片和绳子,学生们可以制作出不同边长的正方形,然后根据正方形的面积与边长之间的关系,引导学生们发现平方根的规律。

三、平方根的音乐表达(300字)

平方根美术教案的第三部分,我们将引导学生们尝试用音乐表达平方根的概念。通过将平方根的计算过程与音符进行对应,学生们可以演奏出和谐的平方根乐曲。例如,可以用钢琴的88个键来表示从1到100的平方根,通过不同音符的组合,学生们将能够感受到平方根的特殊规律。

四、用绘画展现数学之美(300字)

在平方根美术教案的第四部分,我们将鼓励学生们用绘画的方式来展现数学之美。他们可以根据平方根的计算公式,用不同的线条和色彩表现出平方根的特点。例如,他们可以用线段的长度和角度来表达正方形的边长与面积之间的关系,用色彩的明暗变化来表现平方根的大小和增长趋势。这样的创作过程,将不仅帮助学生们更好地理解平方根的概念,同时也培养了他们的审美能力和创造力。

五、纸艺创作与平方根(200字)

在平方根美术教案的最后一部分,我们将引导学生们用纸艺创作的方式来探索平方根。他们可以利用剪纸、折纸等形式,将平方根的概念转化为立体艺术作品。通过将平方根的计算公式与纸艺形式相结合,学生们将激发出对平方根的更深入理解,并能通过作品呈现出平方根的奇妙魅力。

结语:

平方根美术教案是一种创新的教学方法,将数学与艺术完美结合,为学生们打开一扇通向无限创造力的大门。通过在课堂上引入艺术元素,学生们将对平方根有更深入的认识,并能够通过绘画、音乐、纸艺等方式来表达和呈现数学的美。这种教学方法不仅丰富了学生们的学习经验,还培养了他们的创造力和想象力,让他们对数学充满了热爱和兴趣。相信通过平方根美术教案的引导,学生们能够在数学和艺术的交汇之处收获到更多的智慧和乐趣。

平方根课件 篇8

1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;

2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;

3、培养学生的探究能力和归纳问题的能力.

知识重点平方根的概念和求数的平方根。

导入概念如果一个数的平方等于9,这个数是多少?

学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.

使学生完成课本165页的填表练习.

给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

图10.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.

注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.

例1:(课本165页的例4)。求下列各数的平方根。

建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.

在等式中求出x的值,为填表做准备.

通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.

时,为使各次方根的说法协调起见,常采用二次方根的说法.

3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。

通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.

深化概念按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?

建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.

根据上面讨论得出的结果填课本166页的表.

注:学生刚开始接触平方根时,有两点可能不太习惯,一个是正数有两个平方根,即正数进行开平方运算有两个结果,这与学生过去遇到的运算结果惟一的情况有所不同,另

一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.

引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……

而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识.也是平方根概念的进一步深化.

体验分类思想,巩固平方根概念.

加深对符号意义的理解和对平方根概念的灵活应用.

测试学生对平方根概念的掌握情况.

应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。

-64、0,,

如果有要用平方根的符号来表示。

(4),

建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.

思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。

小结:

1、什么叫做一个数的平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

布置作业教科书第167页习题10.1第3、4、7、8、11、12题。

2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术

平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.

2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.

延伸阅读

立方根的课件


我们从众多的选项中选择了这篇最优秀的“立方根的课件”,本文旨在为您提供参考和借鉴希望对您有所帮助。根据教学要求老师在上课前需要准备好教案课件,教案课件里的内容是老师自己去完善的。教案是促进教学目标实现和教育教学管理创新的重要支撑。

立方根的课件 篇1

一、说教材分析

1、教材的地位和作用

本章可以看成其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此在中学数学中占有重要的地位。通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。在此之前,学生已学习了数的平方根,这为过渡到本节的学习起着铺垫作用。通过本节课的学习,学生可以更深入的了解无理数,为后面学习奠定基础。

2、教学目标

(1)知识技能

①了解立方根和开立方的概念;

②掌握立方根的性质;

③会用根号表示一个数的立方根;

④会求一个数的立方根。

(2)数学思考

通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。

(3)解决问题

通过学习立方根,培养学生理解概念并用定义解题的能力。

(4)情感态度

①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。

②通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情。

3、教材的重点与难点

本课的教学重点:立方根的概念及性质。

本课的教学难点:求一个数的立方根。

二、说教法分析

定义推导上采用引导探索法;

定义应用上采用递进练习法。

用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出立方根的定义,将定义的应用融入到探究活动中。

三、说学法指导

本节是新课内容的学习,学生是数学学习的主人,动手实践、自主探索与合作交流是学生学习数学的重要方式。教学过程中以学生的自主学习为主,尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。学生通过独立思考,小组讨论,合作交流,在“自主探索,合作交流”中充分发挥了他们的主观能动性。在学法上主要采用观察法、自主探究法、讨论法、练习法等形式。

四、说教学程序

(一)问题引入

从学生常见的问题引入课题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用。

问题1:已知一个正方体的棱长为2,求它的体积。在解决问题的过程中又引入新问题。

问题2:已知一个正方体的体积是8,求它的棱长?接着让学生练习形如的题目,填出括号中的数字,激发学生的学习兴趣,并让学生初步体会立方与开立方之间的互逆关系。

(二)探究新知

(1)根据以上练习,让学生在平方根的基础上试述立方根的概念

总结:一般地,一个数的立方等于a,即,那么这个数就叫做的立方根(也叫做的三次方根)记做a,其中a是被开方数,3是根指数(强调不能省略),符号读做“三次根号”。

让学生用数学语言即表示前面练习中的立方根,并了解立方与开立方之间的互逆关系。

(2)讲解书本例1

例1求下列各数的立方根:

(1)27;(2)—27;(3)—0.008;(4)0

教师板演2题,其余的由学生仿照完成,巩固学生对立方根符号的书写。

让学生掌握开立方是立方的逆运算,利用立方运算求一个数的立方根。着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法。

学生探索立方根的性质,由老师提示总结:

(a)一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根为零。

(b)互为相反数的两个数,它们的立方根也是互为相反数。

互为倒数的两个数,它们的立方根也是互为倒数。

(3)练一练:下列说法是否正确,并说明理由。

1、平方根是它本身的数只有零;

2、负数不能开立方。

3、4的平方根是2;

4、互为相反数的数的立方根也是互为相反数;

5、立方根是它本身的数只有零。

(三)知识提升

以打开数学之门挖宝藏的形式寻找立方根知识的难点,激发学生的学习兴趣让学生寻找规律,自主归纳学习知识点。

(四)课堂小结

先让学生小结,再教师归纳补充。

1、立方和开立方互为逆运算,利用立方运算求一个数的立方根。

2、立方根的有关性质。

3、立方根与平方根的区别与联系

(五)课后思考题

学由余力的同学课后思考。如由时间老师可以做适当提示。

立方根的课件 篇2

一、说教材:

求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:

(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。

(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。

二、说目标

1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。

2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。

三、说教学设想

在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。

在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算——平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。

本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。

立方根的课件 篇3

一、教学目标

1、了解立方根和开立方的概念;

2、会用根号表示一个数的立方根,掌握开立方运算;

3、培养学生用类比的思想求立方根的运算能力;

4、由立方与立方根的教学,渗透数学的转化思想;

5、通过立方根符号的引入体验数学的简洁美。

二、教学重点和难点

教学重点:立方根的概念与性质。

教学难点:会求某些数的立方根。

三、教学方法

启发式,讲练结合

四、教学手段

幻灯片。

五、教学过程

(一)复习提问

请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

在同学们回答后,启发学生是否可试着给数的立方根下个定义。

1、立方根的概念:

如果一个数的立方等于a,这个数就叫做a的立方根。(也称数a的三次方根)

用数学式表示为:

若x3=a,则x叫做a的立方根,或称x叫做a的三次方根。

2、立方根的表示方法:

类似于平方根德表示方法,数a的立方根我们用符号

来表示。读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根。练习:用根号表示下列各数的立方根:

3、开立方概念:

求一个数的立方根的运算,叫做开立方。

4、开立方运算与立方运算互为逆运算。

因此,我们可以根据立方运算来求一些数的立方根。

例1、求下列各数的立方根:

解:(1)∵(—2)3=—8,

(2)∵23=8,

(4)∵ (0。6)3=0。216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题。由前面刚刚做过的题我们不难看出像8、0。126、103、

这样的正数,有一个正的立方根;像—8、

这样的负数有一个负的立方根;0的立方根是0。由此我们得了立方根的性质。

5、立方根的性质:

(1)正数有一个正的立方根。

(2)负数有一个负的立方根。

(3)0的立方根是0。

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身。

2025立方根课件精华3篇


以下是栏目小编为您整理的关于“立方根课件”的实用知识。老师上课前有教案课件是工作负责的一种表现,而现在又到了写课件的时候了。写好教案课件,可以避免老师遗忘重要内容。如果您喜欢这篇文章请把它收藏起来!

立方根课件(篇1)

一、教学目标

1、了解立方根和开立方的概念;

2、会用根号表示一个数的立方根,掌握开立方运算;

3、培养学生用类比的思想求立方根的运算能力;

4、由立方与立方根的教学,渗透数学的转化思想;

5、通过立方根符号的引入体验数学的简洁美。

二、教学重点和难点

教学重点:立方根的概念与性质。

教学难点:会求某些数的立方根。

三、教学方法

启发式,讲练结合

四、教学手段

幻灯片。

五、教学过程

(一)复习提问

请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?

在同学们回答后,启发学生是否可试着给数的立方根下个定义。

1、立方根的概念:

如果一个数的立方等于a,这个数就叫做a的立方根。(也称数a的三次方根)

用数学式表示为:

若x3=a,则x叫做a的立方根,或称x叫做a的三次方根。

2、立方根的表示方法:

类似于平方根德表示方法,数a的立方根我们用符号

来表示。读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根。练习:用根号表示下列各数的立方根:

3、开立方概念:

求一个数的立方根的运算,叫做开立方。

4、开立方运算与立方运算互为逆运算。

因此,我们可以根据立方运算来求一些数的立方根。

例1、求下列各数的立方根:

解:(1)∵(—2)3=—8,

(2)∵23=8,

(4)∵ (0。6)3=0。216,

(5)∵03=0,

下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题。由前面刚刚做过的题我们不难看出像8、0。126、103、

这样的正数,有一个正的立方根;像—8、

这样的负数有一个负的立方根;0的立方根是0。由此我们得了立方根的性质。

5、立方根的性质:

(1)正数有一个正的立方根。

(2)负数有一个负的立方根。

(3)0的立方根是0。

这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身。

立方根课件(篇2)

一、说教材分析

1、教材的地位和作用

本章可以看成其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此在中学数学中占有重要的地位。通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。在此之前,学生已学习了数的平方根,这为过渡到本节的学习起着铺垫作用。通过本节课的学习,学生可以更深入的了解无理数,为后面学习奠定基础。

2、教学目标

(1)知识技能

①了解立方根和开立方的概念;

②掌握立方根的性质;

③会用根号表示一个数的立方根;

④会求一个数的立方根。

(2)数学思考

通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。

(3)解决问题

通过学习立方根,培养学生理解概念并用定义解题的能力。

(4)情感态度

①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。

②通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情。

3、教材的重点与难点

本课的教学重点:立方根的概念及性质。

本课的教学难点:求一个数的立方根。

二、说教法分析

定义推导上采用引导探索法;

定义应用上采用递进练习法。

用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出立方根的定义,将定义的应用融入到探究活动中。

三、说学法指导

本节是新课内容的学习,学生是数学学习的主人,动手实践、自主探索与合作交流是学生学习数学的重要方式。教学过程中以学生的自主学习为主,尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。学生通过独立思考,小组讨论,合作交流,在“自主探索,合作交流”中充分发挥了他们的主观能动性。在学法上主要采用观察法、自主探究法、讨论法、练习法等形式。

四、说教学程序

(一)问题引入

从学生常见的问题引入课题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用。

问题1:已知一个正方体的棱长为2,求它的体积。在解决问题的过程中又引入新问题。

问题2:已知一个正方体的体积是8,求它的棱长?接着让学生练习形如的题目,填出括号中的数字,激发学生的学习兴趣,并让学生初步体会立方与开立方之间的互逆关系。

(二)探究新知

(1)根据以上练习,让学生在平方根的基础上试述立方根的概念

总结:一般地,一个数的立方等于a,即,那么这个数就叫做的立方根(也叫做的三次方根)记做a,其中a是被开方数,3是根指数(强调不能省略),符号读做“三次根号”。

让学生用数学语言即表示前面练习中的立方根,并了解立方与开立方之间的互逆关系。

(2)讲解书本例1

例1求下列各数的立方根:

(1)27;(2)—27;(3)—0.008;(4)0

教师板演2题,其余的由学生仿照完成,巩固学生对立方根符号的书写。

让学生掌握开立方是立方的逆运算,利用立方运算求一个数的立方根。着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法。

学生探索立方根的性质,由老师提示总结:

(a)一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根为零。

(b)互为相反数的两个数,它们的立方根也是互为相反数。

互为倒数的两个数,它们的立方根也是互为倒数。

(3)练一练:下列说法是否正确,并说明理由。

1、平方根是它本身的数只有零;

2、负数不能开立方。

3、4的平方根是2;

4、互为相反数的数的立方根也是互为相反数;

5、立方根是它本身的数只有零。

(三)知识提升

以打开数学之门挖宝藏的形式寻找立方根知识的难点,激发学生的学习兴趣让学生寻找规律,自主归纳学习知识点。

(四)课堂小结

先让学生小结,再教师归纳补充。

1、立方和开立方互为逆运算,利用立方运算求一个数的立方根。

2、立方根的有关性质。

3、立方根与平方根的区别与联系

(五)课后思考题

学由余力的同学课后思考。如由时间老师可以做适当提示。

立方根课件(篇3)

一、说教材:

求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:

(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。

(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。

二、说目标

1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。

2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。

三、说教学设想

在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。

在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算——平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。

本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。

平方根教案


平方根教案 篇1

一、内容和内容解析

1.内容

无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.

2.内容解析

无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.

用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力.

使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成.

基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围.

二、目标和目标解析

1.教学目标

(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.

(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.

2.目标解析

(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围.

(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的`结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍.

三、教学问题诊断分析

用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求.

基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义.

四、教学过程设计

1.梳理旧知,引出新课

问题1 (1)什么是算术平方根?怎样表示?

(2)负数有算术平方根吗?

师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?

设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容.

2.问题探究,学习新知

问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形?

师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法.

追问(1) 拼成的这个面积为2d的大正方形的边长应该是多少呢?

师生活动:学生自行解答,教师对解答有困难的学生进行指导.

追问(2) 小正方形的对角线的长是多少呢?

师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d.

设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备.

问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”

师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程.

追问(1) 那么是1点几呢?你能不能得到的更精确的范围?

师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较.

追问(2) 实际上,许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少?

设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法.

3.用计算器,求算术根

例1 用计算器求下列各式的值:

(1); (2)(精确到0.001)

师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2).

设计意图:使学生会使用计算器求算术平方根.

练习 教科书第44页练习1.

师生活动:学生独立完成后交流.

设计意图:巩固计算器求算术平方根.

4.综合应用,巩固所学

现在我们来解决本章引言中的问题.

问题4 (1)你会表示出, 吗?

(2)用计算器求, .(用科学记数法把结果写成的形式,其中保留小数点后一位)

师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出, .

设计意图:让学生体会计算器在解决实际问题中的应用.

问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中.

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)利用夹逼法来求算术平方根的近似值的依据是什么?

(2)利用计算器可以求出任意正数的算术平方根或近似值吗?

(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?

(4)怎样的数是无限不循环小数?

设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯.

6.布置作业:

教科书习题6.1第6、9、10题.

五、目标检测设计

1.求的整数部分.

?设计意图】主要考查学生的估算能力.

2.比较下列各组数的大小.

(1)与;(2)与12;(3)与.

?设计意图】主要考查学生的估算和比较大小的能力.

3.若,,那么_______;_______.

?设计意图】主要考查学生对算术平方根概念以及有关规律的理解.

4.国际比赛的足球场的长在100到110之间, 宽在64到75之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560, 问:这个足球场能用作国际比赛吗?

?设计意图】主要考查学生运用算术平方根解决实际问题的能力.

平方根教案 篇2

一、学生起点分析

学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能。

学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》。本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学。课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:

①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质。

②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识。

③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。

三、教学过程设计

本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置。

第五环节:学习小结

内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的通过这节课的学习,我们要掌握以下的内容:

(1)算术平方根的概念,式子中的。双重非负性:一是a≥0,二是≥0。

(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根。

(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根。

目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质。

第六环节:作业布置

习题2.3

四、教学设计反思

1、细讲概念、强化训练

要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的概念教学过程中要做到:讲清概念,加强训练,逐步深化。

“讲清概念”就是通过具体实例揭露算术平方根的本质特征。算术平方根的本质特征就是定义中指出的:“如果一个正数的平方等于,即,那么这个正数就叫做的算术平方根,”的“正数”,即被开方数是正的,由平方的意义,也是正数,因此算术平方根也必须是正的当然零的算术平方根是零。

“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示。

“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用。

2、发展思维、适度拓展

在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重非负性的知识进行适当的拓展。

平方根教案 篇3

一.学生学情分析

学生在七年级上册学习 “棋盘上的故事”就认识了一种运算 “乘方”,并能熟练计算任何一个数的平方。知道正数的平方是正数,负数的平方是正数,“平方”和“开平方”的概念做辨析,使学生在“引导——探索——类比——发现”中发展学习数学的能力。

二.学习任务分析

第二章《实数》的第二节,本节安排了两个课时完成。第一课时是了解数的算术平方根 的概念,会用根号表示一个数的算术平方根。在具体的例子中抽象出概念,发展学生的抽象概括能力。本节课是第二课时,继续学习平方根的概念及其运用。并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导——探索——类比——发现”中发展学习数学的能力。

三.学习目标

知识目标

开平方的概念。

2、明确算术平方根与平方根的区别和联系。

3、进一步明确平方与开平方是互逆的运算关系。

能力目标

1、经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力。

辨析问题的能力。

情感目标

交流、合作、培养团队的精神。

2、在学习的过程中,培养学生严谨的科学态度。

四.重点、难点 重点

平方根的概念。

2、了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根。

3、了解平方根与算术平方根的区别与联系。

难点:

1、平方根与算术平方根的区别和联系。

2、负数没有平方根,即负数不能进行平方根的运算。

五.学习方法 自主 合作 探究

六.课前准备

完成导学稿

七.学习过程设计

平方根教案 篇4

人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案

课题: 10.1 平方根(1)

教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;

3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。

教学难点 根据算术平方根的概念正确求出非负数的算术平方根。

知识重点 算术平方根的概念。

教学过程(师生活动) 设计理念

情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 .怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.

这节课我们先学习有关算术平方根的概念.

请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对

本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知

幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.

提出问题

感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题

就是已知正方形的面积求正方形的边长,这与学生以前学过的

已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式 =a (x≥0)中,规定x = .

思考:这里的数a应该是怎样的数呢?

试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。

算术平方根的概念比较抽象,原因之一是学生对石这个新

的符号的`理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.

应用新知 例.(课本第160页的例1)求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为

例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.

探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

教科书在边空提出问题“小正方形的对角线的长是多少”,

这是为在10.3节介绍在数轴上画出表示 的点做准备.

小结与作业

课堂小结 提问:1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根?

布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。

4、 备选题:

(1)判断下列说法是否正确:

i. 是25的算术平方根;

ii. 一6是 的算术平方根;

iii. 0的算术平方根是0;

iv. 0.01是0.1的算术平方根;

⑤一个正方形的边长就是这个正方形的面积的算术平方根.

(2)下列各式哪些有意义,哪些没有意义?

①- ② ③ ④

(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。

在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算

术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.

通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣

的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.

通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.

平方根教案 篇5

学习目标:

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

学习重点:

了解平方根的概念,求某些非负数的平方根

学习难点:

了解被开方数的非负性;

学习过程:

一、 学习准备

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

32 = ( ) ( )2 = 9

(—3)2= ( ) ( )2 =

( )2= ( ) ( )2 = 0

( )2 =( )

02 =( ) ( )2 = —4

3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:

叫做开平方,平方与 互为逆运算

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数 有两个平方根,它们互为相反数;

零 有一个平方根,它是零本身;

负数 没有平方根。

交流:(1) 的平方根是什么?

(2)0.16的平方根是什么?

(3)0的平方根是什么?

(4)—9的平方根是什么?

5、平方根的表示方法

一个正数a有两个平方根,它们互为相反数。

正数a的`正的平方根,记作

正数a的负的平方根,记作

这两个平方根合在一起记作

如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数

这里的a表示什么样的数? a是非负数

二、合作探究

1、判断下面的说法是否正确:

1)—5是25的平方根; ( )

2)25的平方根是—5; ( )

3)0的平方根是0 ( )

4)1的平方根是1 ( )

5)(—3)2的平方根是—3 ( )

6) —32的平方根是—3 ( )

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

(1) 0.81 (2) (3) —100 (4) (—4)2

(5)1.69 (6) (7) 10 (8) 5

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)12 , 144 ( ) (2)0.2 , 0.04 ( )

(3)102 ,104 ( ) (4)14 ,256 ( )

2、选择题(1) 0.01的平方根是 ( )

A、0.1 B、0.1 C、0.0001 D、0.0001

(2)因为(0.3)2 = 0.09 所以( )

A、0.09 是 0.3的平方根。 B、0.09是0.3的3倍。

C、0.3 是0.09 的平方根。 D、0.3不是0.09的平方根。

3、判断下列说法是否正确:

(1)—9的平方根是—3; ( )

(2)49的平方根是7 ; ( )

(3)(—2)2的平方根是 ( )

(4)—1 是 1的平方根; ( )

(5)若X2 = 16 则X = 4 ( )

(6)7的平方根是49。 ( )

4、求下列各数的平方根

1)81 2)0。25 3) 4)(—6)2

5、求下列各式中的x:

(1) x=16 (2) x= (3) x=15 (4) 4x=81

思维拓展:

1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是

2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。

4、一个数x的平方根等于m+1和m—3,则m= 。x= 。

5、若|a—9|+(b—4)=0,则ab的平方根是 。

6、熟背1至20的平方的结果。

7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?

平方根教案 篇6

聋校算术平方根教案

1

平方根(算术平方根)

实习生:方迎花 实习班级:八年级聋生 指导教师:宋老师

一、教材分析:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。

通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围。本章内

容不仅是后面学习二次根式、一元二次方程以及解三角形边长等知识基础,

也为学习高第一文库网中数学中的不得式、函数及解析几何的大部分知识做好准备。本

章的重点是算术平方根和平方根的概念和求法,是理解立方根的概念和求

法,实数的意义和运算的直接基础;难点是平方根和实数的概念,学生对正

数开平方会有两个结果感到不习惯,容易将算术平方根和平方根混淆。实数

的概念是一个构造性的定义,比较抽象,对于概念的理解有一定的困难。

二、学情分析:学生在七年级已经接触了有理数,对数有了一定的认识,基本上掌握了有理

数的乘方,对平方根、立方根的求解提供了一定的基础。学生已经知道已知

正方形的边长求正方形的面积的方法,利用实际的数学问题引出算术平方根,

让学生结合已有的经验,算术平方根与平方根就易于理解。对于开方后得数

为有理数的,学生很容易掌握,但是对于开方后为无理数的对于学生而言相对较难,因此中在教学过程中通过探究方式引出2,让学生初步认识无理

数,同时进一步加深对数的认识,扩大数的范围。本班学生共19人,正常学

生1人部分为重听学生,学生的认知水平和数学能力个体差异比较大

在教学过程中要注意个别辅导。

三、教学目标:

知识技能:1.了解算术平方根的概念。

2. 会求一个数的算术平方根,并会用符号表示。

过程与方法:通过实际问题的解决和探究过程,让学生理解一个数的平方和开平方之

间的联系,体会问题的多样性和了解从两个方向入手思考问题。

感情态度:认识数学与人类生活的。密切联系,提高学生的数感和符号感,发展抽象思

维,锻炼学生主动思考的能力,克服困难的意志,建立自信心,提高学习

热情。

四、教学重难点

教学重点:算术平方根的概念,初步感受无理数。

教学难点:算术平方根的求法。

五、教学准备:多媒体课件

六、教学方法:情境创设法及操作练习法为主,讲授法为辅。

七、授课时间:10月19日 星期三 上午第四节课 第1课时

课型:汇报课

八、教学过程

(一)导入:(复习导入,知识回顾)

T:1、我们以前学过的有理数有哪些?

S:正数、负数……

T:2、填空。第一题,4的平方等于谁乘于谁,等于几……

S:……

(二)情景创设,引入算术平方根

身边的小事:学校要举行美术作品比赛,小鸥很高兴,他想裁出一块面积为25dm 的正

方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少?

T:你们能不能帮助小欧求出边长,怎么求?

S:5dm

T:怎么求的?S:……

T:我们现在知道的是正方形的面积为25平方分米,要求边长。正方形的面积=边长×边长,所以可以求得边长为5dm。

T:那么如果正方形的面积是1,4,15,36 ……边长分别是多少呢?

S:1,2,4 ……

T:像这种数学问题,我们可以把它看做已知一个正数的平方,求这个正数的问题。 概念引入

T:像5的平方等于25,那么5叫做25的算术平方根,10的平方等于100……,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。(进一步强调概念,学生齐读)

练习:说出下列各数的算术平方根:

(1)9 (2)4 (3)3

先点学生回答,再纠错

(1)因为3的平方等于9,所以9的算术平方根是3

(2)因为2的平方等于4,所以4的算术平方根是2

(出示ppt)

T:那么3的算术平方根是多少呢?怎么求?

S:……

T:我们先来看一下,如果像3一样的数,没法从以前我们学过的有理数中找到算术平方根,那我们应该怎么表示呢?

T:(出示ppt)

a 的算术平方根记为a,读作:根号a,x=a,a叫做被开方数

规定:0的算术平方根为0,即0=0

T:那么3的算术平方根我们可以表示为多少?

S:3,T:9的算术平方根呢……

T:我们再来回顾下算术平方根的定义。

S:(学生齐读)在一次强调正数,算术平方根为正数,0的算术平方根为0。

(三)巩固练习:试一试

1、求下列各数的算术平方根

(1)100 (2)1 (3)0 (4)

先让学生先思考,教师再核对。

2(1)解:∵10=100,,100的算术平方根为=10…… 49 64

(出示ppt,第五题,第六题)

(5)3的算术平方根等于多少?说说你是怎样求的?

S:3的算术平方根是3(据学生的回答情况讲解) 22

(6)4的算术平方根为几?

S:不知道。没有……

T:(再次回到算术平方根的定义),因为没有一个数的平方可能是负数,所以4没有算术平方根。 对于a:a≥0 非负双重性

a

T:这就是算术平方根的性质,被开方数必须大于或等于0,a也就是算术平方根也

必须大于或等于0,即a和a都不能为负数,叫做非负双重性。所以负数没有算数平方根。

2、知道下列式子意思吗?能求出他们的值吗?

(1)25 (2)12 (3)0.81 (4)0 (5) 4

2 先让学生自己思考,再分别请学生回答,对5进一步讲解。

(四)总结布置作业。

1、说说这节课你学到了什么知识?

2、算术平方根的定义和性质

3、怎样求一个正数的算术平方根?

(这节课我们主要学习了算术平方根的定义及算术平方根的性质:非负双重性。也就是说被开方数和算术平方根都不能为负数。下节课我们一起来感受2的大小。) 作业:

(1)课本p75习题13.1第1,2题

(2)你能用边长为4的正方形剪拼成面积为2的正方形吗?

九、板书设计

13.1.1 算术平方根

1、算术平方根: x2=a, x叫做a的算术平方根,记为a,a叫做被开方数

=0

2、算术平方根的性质:a≥0

非负双重性

a

3、总结、作业(p75习题13.1第1,2题)

平方根教案 篇7

在教学工作者开展教学活动前,很有必要精心设计一份说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那要怎么写好说课稿呢?以下是小编收集整理的七年级数学6算术平方根说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、教材分析:

1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根。

2、教材的地位与作用

本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。

3、教学重点、难点

教学的重点:算术平方根概念的引入

教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题

二、教学目标设计:

知识与技能:

1、说出正数a的算数平方根的定义,记住零的算术平方根;

2、会表示一个非负数的算术平方根;

3、知道非负数的算术平方根是非负数;

数学思考:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维;

解决问题:通过学生的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

情感态度:通过学习算术平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。

三、教学分析:

1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。

2、相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究、小组合作学习。

3、具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者、实践者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。

四、教学过程设计:

1、创设情境引入新课

结合通过“神州1号载人飞船发射成功”引入新课,从而激发兴趣,增强学生的学习热情。

2、师生互动,学习新知

以已知正方形的面积,求边长。通过分析问题,引导学生归纳算术平方根的概念。在此基础上师通过“想一想”“试一试”“练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有算术平方根,算术平方根具有双重非负性。

3、动手操作学以致用

从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。

4、随堂检测反思教学

通过小测试,及时检测学生对本课知识的掌握情况,提高学生的竞争意识,同时反思教学,查漏补缺.

5、提出疑问留下伏笔

培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。

说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程,坚持以学生为中心以操作为重要手段,以感悟为学习的目的,以发现为宗旨,重视学生的自主探索、亲身实践、合作交流学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。

平方根教案必备


笔者为您提供了一份易于理解的“平方根教案”学习材料。通常教师在授课前都会准备教案和课件,以确保教学质量。教案是教学经验的重要总结。希望这篇文章能够激发您的思考,并让您对相关知识有更深入的了解!

平方根教案(篇1)

一、教材分析:

1、教材的地位和作用

本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

2、教学目标

⑴、知识与技能

帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。

⑵、教学思考

在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。

⑶、解决问题

通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。

⑷、情感态度与价值观

通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。

3、教学重点、难点与关键:

重点:平方根的概念和性质难点:平方根的概念和表示的理解。

关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

二、学情分析

根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。

1、学生的现有基础

在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。

2、学习的现状

此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的.意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

三、说教法与学法

教法:

(1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.

(2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.

(3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.

学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.

四、教学程序:

(一)创设情境,激发兴趣

首先,我动画的形式,用多媒体示出问题情境:

(1)()2=9,()2=9;()2=0.64,()2=0.64.

(2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;

(3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。

总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。

(二)合作交流,理解概念

1、填空:

(1)32=(),(-3)2=(),22=(),(-2)2=(),02=()

(2)()2=&

nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?

2、想一想

(1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();

(3)负数______平方根(填“有”或“没有”)

(三)综合训练,突出重点

1、出示例3求下例各数的平方根:

(1)64;(2);(3)0.0004;(4)(-25)2;(5)11

2、为了加深对平方根的理解,我出示课本P42页“想一想”:

(1)()2=();()2=();()2=()(2)对于正数a,()2=()

(四)课后小结

(五)作业P47第3和第4题

五、板书设计平方根

平方根概念:……例3:---------------

开平方概念:……解:(板演详细解题过程)……

法则:……

六、设计说明:

(一)、指导思想:

依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。

(二)、关于教法和学法

采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计

在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

①注重目标控制,面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

③注重师生间、同学间的互动协作,共同提高。

④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

平方根教案(篇2)

平方根是实数的起始课,又是学习实数的第一节课,内容涉及的知识点不多,知识的切入点比较低,而新课程将其建立在以学内容有理数的基础上,加强与前面的知识点的联系。我选择这节课,突出实数与有理数的联系。

针对七年级学生有一定的自学、探索能力小。借助学生学习的优势,脑和手充分动起来。学生间互相探讨,积极性也被充分调动起来。

让学生通过实际例子,体会算术平方根的定义,通过剪正方形得出面积为2的大正方形的边长,从而解决了生活实际问题,让学生体会生活中的数学。

在本节课中,本着以学生为主,突出重点的意图,结合学生的实际情况,在引入算术平方根的定义时,让学生发掘生活中已知面积而求边长的问题,把实际问题抽象成数学问题,通过例题和练习让学生总结,并关注算术平方根的写法格式,为了突破本节课的难点和重点,真正做到以学生为本,抓住课堂45分钟,突出效率教学,我在准备了操作题,让学生更加体会算术平方根的含义,将想和做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。

本节课的不足:1.没有充分利用已有的图形调动学生的积极性,在做面积为2的大正方形时,我没有让学生看书,这样就在我的讲解中度过了,如果让学生先看书然后在动手操作,那样学生的成就感就得到了体现。2.学生的层次不同,对于基础好的就吃不饱,对于C组的同学满足不了他们的学习需求。

建议:把下面的平方根先上,那样在解方程时就不会出现那么多的正负的问题。

平方根教案(篇3)

一、教学目标

1.理解一个数平方根和算术平方根的意义。

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根。

3.通过本节的训练,提高学生的逻辑思维能力。

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法

讲练结合。

四、教学手段

多媒体

五、教学过程

(一)提问

1、已知一正方形面积为50平方米,那么它的边长应为多少?

2、已知一个数的平方等于1000,那么这个数是多少?

3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空

1、( )2=9 ( )2 =0.25

2、( )2=0.0081

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根。

±0.5是0.25的平方根。

0的平方根是0。

±0.09是0.0081的平方根。

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

( )2=-4

学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质

1、一个正数有两个平方根,它们互为相反数。

2、0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到 3与-3的平方是9,9的`平方根是 3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

练习:用正确的符号表示下列各数的平方根:

①26②247③0.2④3⑤

解:①26 的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤ 的平方根是

平方根教案(篇4)

师:请同学们把准备好的两个正方形拿出来,我们一起来看看这个问题(出示幻灯片)

师:(教师下去参与小组活动,由于学生事先预习了,有的同学按书上的虚线操作成功)

生:(很高兴站起来演示,其他学生也一起比划着)。

师:我也给你们演示一下(课件演示)。那你们知道根号2有多大吗?

师:这是一个近似值,受计算器的位数限制只显示了12位,我们一起来看看下面的方法(教师一边写一边说、一边问)

师:(写完后)根号2是个无限不循环小数,有多大?

师:要注意计算器上显示的是近似值,注意每道题目具体的精确度要求,(对答案)。

生1:好像“被开方数越大,它的算术平方根也越大”。

生2:被开方数的小数点每向右移动两位,它的平方根的小数点就向右移动一位。

生3:我也发现了:被开方数的小数点每或向左移动两位,它的平方根的.小数点就或向左移动一位。

师:同学们观察得非常仔细,表达也很清晰。能直接写出根号30的值吗?

师:这里写的很好,50大于49,根号50大于7, 大于21,结果小明说的不对,小丽不能裁出符合要求的纸片。所以我们不能想当然,数学就要用数字说话。

师:(师生一起小结,学生填在课堂练习上)今天我们收获了什么?

平方根教案(篇5)

问:

1.625的平方根是多少?这两个平方根的和是多少?

2.-7和7是哪个数的平方根?

3.正数m的平方根怎样表示?

4.下列各数的平方根各是什么?

答:

1.625的平方根是25和-25,这两个平方根的和是0.

2.-7和7是49的平方根.

(2)0的平方根是0.

(5)因为-16<0,所以-16没有平方根.

(6)因为(-4)3=-64<0,所以(-4)3没有平方根.

问:已知正方形的面积等于a,那么它的一条边长等于多少?

用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负

(1)被开方数a表示非负数,即a≥0;

数a的正的平方根.

例1求下列各数的算术平方根:

(4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即

问:一个正数a的平方根与这个正数的算术平方根之间有什么关系?

指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的

它的算术平方根的相反数.

例2求下列各数的平方根及算术平方根:

(2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即

问:说明下列各式所表示的意义是什么?分别求出它们的值.

1.下列各式中哪些有意义?哪些无意义?

2.判断下列各题正确与错误,并将错误改正.

2.(1)正确;(2),(3),(4)错误.

(6)正确. (7)正确.

3.(1)±100,100; (2)±2.7,2.7;

平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系.

1.平方根和算术平方根的区别.

(1)定义不同.如果x2=a,那么x叫做a的平方根.

一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.

如果x2=a,并且x≥0,那么x叫做a的算术平方根.

一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.

(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.

2.平方根和算术平方根的联系.

(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.

(2)存在条件相同.非负数才有平方根和算术平方根.

(3)零的平方根和零的算术平方根都是零.

1.求下列各式的值:

(4)±70,70; (5)±10-2,10-2.

平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:

1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示

2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.

在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法.

平方根教案(篇6)

一、 教学目标:

1.运动多种识字方法,会认“雾、霜、朝、霞、夕、蝶、蜂、碧、紫、千、李、杨、秀”13个生字。会写“秀、和”2个字,区分“秀、和”偏旁的写法。

2.正确、流利地读好对子歌,激发学生对对子和收集对子的兴趣。

3.体会大自然的美妙,享受大自然的神奇,产生对大自然的热爱之情。

1.同学们,上课之前咱们来说一个游戏怎么样?

我说长,我对短,  我说胖,我对瘦,  我说粗,我对细,

我说天,我对地, 我说天上,我对地下。

2.师:同学们玩得高兴吗,我们玩得游戏叫对对子,这可是我们祖国的传统    文化,今天,我们就来学习一首描写自然景观的对子歌。

请同学们伸出右手的食指和老师一起写课题,齐读课题。

同学们,大自然有着美丽的景色,你想不想读?在读之前老师有个问题想问大家,在读的过程中遇到不认识的字怎么办?(借助拼音,问同学或者老师)

下面,就请同学们端起课本,放开声音自己试着读读课文,注意要读准字音奥!(预设:齐读,说:“同学们读得很整齐,能自己读吗?”)

下面我们来接读课文,课文有3个小节,我呢就请3个小朋友来读,其它小朋友认真听,大家都是小评委。

3.学生评价。

4.生字变红,齐读。

这三个同学读得很流利(声音很响亮),其他同学读得怎么样呢?放下课本,请看大屏幕,我们一起来读一读。(评价:同学们的声音真响亮)

读完后你发现了什么?这些红色的字就是我们这节课的生字。

生字宝宝很想和大家成为朋友,他们忍不住跳出来和大家打招呼了,大家还认识它们吗?

谁能像老师这样当小老师,领着大家读。

四、随文识记生字。

过渡:大家知道吗?生字宝宝可热情了,他们邀请我们到美丽的大自然去欣赏一番呢。

2.出示第一句。同学们都见过云和雪,那你见过雾吗?雾一般都是早晨出现的,所以我们又叫晨雾,板书晨雾。同法教学秋霜。

3、出示图片,你知道这个图片中隐藏的对子吗?出示和风对细雨,朝霞对夕阳。

1.我们都有一双善于发现的眼睛,我们来看下一句。出示花对草,蝶对蜂。分男女读,边看图片边认识蝶、蜂。

2.出示第二句。依据图片认识蓝天、碧野,积累万紫千红一词。

(三)学习第三小结,识记生字。

1、出示第三小节第一句,认识四种树木。

3、出示第二句,学生读一读。

4、读得真好听,老师来考考大家,像这幅图画我们可以用哪个四字词语来形容呢?是(蓝天碧野)。

①看图想一想,碧是什么意思?

小结:碧是绿色,在这指碧绿的田野。看!借助图画,还可以理解字的意思呢!

②生活中你还见过碧绿的什么?

4.蓝天碧野,有蓝色、绿色,你知道大自然中还有哪些漂亮的颜色吗?

小结:这么多的色彩在一起,太漂亮了,这就是(万紫千红)。

5.这美丽的风景我们又可以用哪个词语形容呢?真聪明,齐读山清水秀,秀就是好看的意思。

6.我们德兴是一个山清水秀的好地方,有……(三清山、大茅山、凤凰湖等)

三、巩固识字。

过渡:同学们课文读得不错,我们一起来做个小游戏吧!

2.认读生字。

看那!生字宝宝又来看大家了,我们开小火车读一读,好吗?

3、生字归类。出示课件学习。

3、认读词语:黑板上的词语大家一起再读一读,分男女生读。     朝阳 、晚霞、晨雾、秋霜、

火车开得快起来了,小朋友还能读准吗?

小结:大家真棒,生字朋友感谢大家,我们把掌声送给自己吧!

四、指导观察,学写生字。

过渡:同学们,识字可以丰富我们的知识,开阔我们的视野,同样,把字写好也能给人带来美好的享受!

1.读贴。

①出示“和”“秀”,指导观察:秀是上下结构,和是左右结构,它们都有一个“禾苗”的“禾”字,看这个禾字在这两个字中有什么不同?(形状上有什么变化呢?)

明确一个在上,一个在左,一个扁,一个瘦,和的一捺变成点。

“秀”是上下节构,禾在上半格应该写得扁一些;上撇是平撇,不能写成斜撇;竖要写短,给下面的“乃”留下空隙;一撇一捺要尽量伸展。

③写字的时候,坐姿是非常重要的,请大家坐端正,写一个“秀”字。

④观察自己的字和例字,看看有什么不足?再写第二个秀字,改进第一个字的不足。

3.范写“和”

①“和”是左右结构,当禾做偏旁的时候,不仅会变窄,还会将捺变成一点,这就是汉字中的避让,这样写出来的字才更紧凑、漂亮。

②边说口诀边范写:禾字做旁真谦让,身体变瘦腾地方,一捺变点懂礼让。

[《识字3》教学设计 (人教版一年级下册)]

平方根教案(篇7)

以国庆盛典,阅兵方队导入,以近期热点激发学生学习兴趣。以方队的面积 225平方米,求方队边长为切入点。以2平方米的正方形画布,求其边长为悬念。再设置“想一想”如果一个数的平方等于9,求这个数。用一些可感知具体数学事例引出平方根的定义,使概念变得浅显易懂。也渗透了由特殊到一般,由具体到抽象的数学方法。

设置的数学活动有“接龙”,“判断正误”,“学生板演展示”和“填空”等。活动形式丰富。在这一块里,吴老师设置的两个填空题我觉得相当精彩:

1、 2的平方根是 ?

2、一正方形画布的面积为2,求画布边长。

两道题学生都不假思索异口同声的回答到± 。此时吴老师不是立刻给予纠正,而是给学生以自我反思的时间和空间,使学生得出正确的答案。吴老师顺利的链接到算术平方根的概念,可谓设计之巧妙,独具用心。

在重难点的突破上,老师也做了精心设计。在学生初步形成知识的基础上,吴老师对学生已形成的知识进一步梳理。吴老师是这样设置这一环节的:

1、 请区别:± 、 分别表示什么?然后辅以2、解释: 这一可感知的具体例子。从抽象到具体的加以梳理,使得学生由“混沌”状态进入“澄明”状态。这一环节不但使重难点得到突破,而且可以说是课堂大总结。一箭双雕。

不过有一点值得探讨的是,在学生“接龙”活动中,很顺畅。学生提及的都是可直接开方的数,如4,9,16等。我就在想为什么没有学生提出7,8,5这样的无法直接开方的.数呢?这些数的平方根是多少呢?为什么没有学生发出创造性和跨越性提问呢?是不是我们的教学设计约束了学生的开放思维呢?而这种提问和思维正是我们教学过程中苦苦追寻的东西。

总的说来老师教态明朗,快活,庄重;教学语言富有感染力,板书工整,设计科学;这节课为学生创设了宽松,和谐的学习环境;关注了学生学习过程,让学生有体验数学的机会,学生学习积极主动。师生,生生互动有效;学生自我监控和反思能力得到提高并获得了积极的情感。是一堂自然生成的、常态下的好课。

平方根教案(篇8)

一、教材分析:

1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根,算术平方根说课稿。

2、 教材的地位与作用

本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。

3、 教学重点、难点

教学的重点:算术平方根概念的引入

教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题,

二、 教学目标设计:

知识与技能:1、说出正数a的算数平方根的定义,记住零的算术平方根;

2、会表示一个非负数的算术平方根;

3、知道非负数的算术平方根是非负数;

数学思考:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维;

解决问题:通过学生的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

情感态度:通过学习算术平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。

三、教学分析:

1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。

2. 相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究、小组合作学习,教案《算术平方根说课稿》。

3. 具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者、实践者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。

四、教学过程设计:

1、创设情境 引入新课

结合通过“神州七号载人飞船发射成功”引入新课,从而激发兴趣,增强学生的学习热情。

2、师生互动,学习新知

以已知正方形的'面积,求边长。通过分析问题,引导学生归纳算术平方根的概念。在此基础上师通过“想一想”“试一试”“练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有算术平方根,算术平方根具有双重非负性。

3、动手操作 学以致用

从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。

4、随堂检测 反思教学

通过小测试,及时检测学生对本课知识的掌握情况,提高学生的竞争意识,同时反思教学,查漏补缺.

5、提出疑问 留下伏笔

培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。

说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程,坚持以学生为中心以操作为重要手段,以感悟为学习的目的,以发现为宗旨,重视学生的自主探索、亲身实践、合作交流学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。

长方形课件(汇总八篇)


教案课件是教师上课过程中不可或缺的重要组成部分,现在是准备教案课件的时候了。优秀的教学质量需要依靠完善的教案来支撑,那么怎样的教案课件才算是优秀的呢?为了帮助大家更好地提高教学水平,趣祝福小编为大家精心准备了一份关于“长方形课件”的相关资料,希望能够为大家提供借鉴,并共同进步!

长方形课件 篇1

【教学目标】

1、初步学会整理四边形、长方形、正方形和周长的知识,建构简单知识网格图。

2、历经运用周长的知识解决实际生活问题的过程,进一步掌握计算长方形和正方形的周长的方法。

3、让学生充分感受数学与生活的密切联系,培养学生爱思考,爱学习的情感。

【教学重点】

理解周长的意义,会计算长方形和正方形的周长。

【教学难点】

用周长的知识解决生活中的问题。

【教学用具】

课件

【教学过程】

一、走进生活,再现知识

1、谈话引入

问:这学期我们学过了哪些图形?教室里面有吗?你还在哪里见过?

生:长方形、正方形、四边形

2、今天我们就来一起复习长方形和正方形——板书课题

3、梳理知识,主体内化

同学们,回想一下,关于长方形和正方形这个单元,我们学习了哪些知识?请同学们闭上眼睛回想。

学生先交流,后汇报

结合知识网格图,集体完成。

二、综合应用,整体提高

(一)基础练习

整理完学过的知识,你们想不想做一回小法官?

1、聪明小法官

(用手势来表示对错)

你们真了不起!很能明辨是非。最近呀,廖老师想布置一块迎新春的.展板,你们能不能利用我们刚才复习的知识和廖老师一起设计这块展板呢?(能)好,我们开始吧!

2、首先,我们给这块展板的四周镶上花边,展板的长是28分米,宽是15分米,那么至少需要多长的花边呢?(出示课件)

求花边的长指的是什么?怎么求?学生独立完成。

3、你们真是了不起。同学们,你们知道2015年是什么年吗?(羊年)是的,我们在展板上贴上一幅年画好不好?如果给它镶上一个边框,会更美哦!它是一个边长为30厘米的正方形,那么这个边框需要多长呢?

小结:我们刚才镶花边,上边框都是求什么?(周长)求长方形和正方形的周长都可以用它们的公式来求。如果给出周长,让你求边的长度,你们会吗?廖老师相信你们能行。

(二)拓展练习

4、为了展示你们的风采,廖老师想布置一个手工区。现在,廖老师这有一条花带总长24分米,如果要布置手工区的长为7分米,那么它的宽是多少分米呢?

请大家齐读题目,问题是什么?已经知道了什么?怎么求?

廖老师觉得班的同学真聪明,真喜欢你们。

5、手工展示台做好了,春节也快到了,家家户户的门口都挂起了红红的(灯笼),我们一起在展板上装上灯笼吧,(出示PPT)灯笼的平面图是一个不规则图形,你能算出这个图形的周长吗?

谁上来指出这个不规则图形的周长?小组合作讨论。

(三)综合练习

同学们,我们给展板写个主题吧?定什么好呢?(出示PPT)(欢度春节),这四个字你们想怎么布置?

6、用四个边长为10厘米的正方形能拼成我们学过的什么图形?哪个图形的周长最短?

在大家的共同努力下,我们的展板布置的差不多了,廖老师相信你们还有更妙的点子来设计这块展板,由于时间关系,同学们可以课后再布置。

三、课堂小结

这节课,你学到了什么?

同学们用自己学过的知识布置好这么美丽的展板,很不简单。生活中处处有数学,希望同学们能勤观察、多思考,做一个探索者,你会发现数学中有无穷的奥秘。

长方形课件 篇2

本课的主要教学目标是帮助学生认识长方形的特征。在这个内容的教学中,小吴老师采用了先猜测后验证的方法。这样的教学方式一方面培养了学生的创新意识。另一方面也提高了学生的研究能力,也包括其他的比如动手操作能力。学生的反映应该说也在老师的预设之中,有的是用直尺量的,有的是用折的方法证明了长方形的特征。学生的参与热情很高,并把学生研究的结果通过板书使之条理化和系统化。这个环节应该说是层次非常地清晰。学生对长方形和正方形的特征在原有的经验上有了进一步的了解。

在创设情境部分借着让学生观察教室里哪些物体的面是长方形引出新知,激发了学生的学习兴趣,同时也唤起学生对长方形的初步认识。在探究新知部分先让学生凭借已有的知识经验和生活经验对长方形的边和角做出大胆的猜想,然后抓住此契机引导学生动手操作,在动手操作的过程中发现证明,培养学生的动手动脑和团结协作的精神,并且培养学生与人交流表达自己看法的勇气。在巩固新知部分通过学生喜欢的多种形式的练习,使学生在多种活动中多次体验长方形对边相等、四个角都是直角的特征,巩固所学知识,培养学生学习数学的兴趣。

在这节课的教学中,我认为最大的闪光点是:每次小吴老师把要点讲授完之后,都会以多媒体的形式呈现出来,帮助学生加深理解。例如,在讲授完长方形的长、宽定义之后,多媒体呈现两个长、两个宽;讲授完长方形对边相等的特点之后,也用多媒体呈现,调动了学生的多种感官,激发了学生的学习兴趣,大大提高了教学效率。

总之整个课堂中,让学生多种感官参与活动,把课堂变成数学活动的场所。动手操作贯穿始终,注重让学生在动手实践的过程中去体验、感悟、发现长方形的特征,充分发挥了学生学习的自主性,把课堂还给了学生,让学生积极主动地获取新知。为学生提供了动手实践、自主探究、合作交流的舞台。

长方形课件 篇3

设计说明

本节课主要探究的是长方形和正方形周长的计算方法。这是在学生知道了长方形和正方形边的特点,理解了周长的实际意义的基础上进行学习的。本节课的教学设计突出了以下两点:

1、注重培养学生动手操作和实践探究的能力。

在教学中,鼓励学生进行独立探究,引导学生动手量一量,动笔画一画、算一算,通过计算长方形和正方形的周长,既发展了学生的动手操作能力,又完成了本节课的教学目标。

2、注重发挥学生的主体地位。

在探究长方形和正方形周长的计算方法的过程中,学生利用对周长含义的理解,充分发挥自主性,用不同的方法计算出它们的周长。在这个过程中,教师让学生汇报自己的学习成果,恰到好处地进行引导,从而归纳出长方形和正方形周长的计算方法。

课前准备

教师准备 PPT课件 题卡 学情检测卡

学生准备 直尺 彩笔 题卡

教学过程

⊙激趣引入

1、复习旧知。

师:同学们还记得上节课我们学过哪些知识吗?谁能说一说周长指的是什么?

(学生回答老师的提问)

2、引入新课,揭示课题。(课件出示)

师:刚才我们看到美羊羊和喜羊羊分别沿着长方形和正方形走了一圈,谁走得远?应该怎样解决这个问题呢?

(要算出长方形和正方形的周长才能知道)

师:同学们说得真棒,今天我们就一起来研究长方形和正方形的周长。(板书课题)

设计意图:通过具体的情境引入新课,使学生既感受到了数学与生活的密切联系,又激发了学生探究的欲望,让学生带着兴趣去学习,带着问题去探究,为学生创设了良好的学习氛围。

⊙实践探究

1、引导学生探究长方形周长的计算方法。

(1)课件出示教材48页上面例题。

师:这是我们学过的什么图形?怎样才能求出它的周长呢?

学生动手操作,先量一量,再计算。

(2)组织学生集体交流结果和方法。

师:你测量了哪几条边的长度?你是怎样算出这个长方形的周长的?

(请学生充分表达,展示自己解决问题的过程和结果)

预设

方法一:先量出4条边的长度,再加起来。

5+3+5+3=16(厘米)

方法二:先分别量出长和宽的长度,再把2个长和2个宽加起来。

5×2+3×2=16(厘米)

方法三:先把1个长和1个宽加起来,再乘2、

(5+3)×2=16(厘米)

(3)理解计算方法。

针对只测量长方形的一条长和一条宽的同学提问:你是怎样想的?

在交流中明确:长方形的特征是对边相等。

(4)对比评价。

师:你喜欢哪种方法?为什么?

引导学生对比和评价不同的计算方法。

长方形课件 篇4

教学内容:

长方形面积的计算(《现代小学数学》第六册).

教学目标:

1.使学生掌握长方形面积计算公式的形成过程,并且会运用公式进行计算.

2.通过对长方形面积计算公式形成过程的理解,培养学生初步的空间观念及思维的深刻性.

3.培养学生合作学习的精神和动手实践的能力.

教学重点:

长方形和正方形面积计算公式的掌握和初步应用.

教学难点:

理解长方形面积计算公式的形成过程.

教学用具:

电脑、每个学生6个1平方厘米的小正方形、直尺、米尺、卷尺.

1.提问.

(1)我们已经学习了哪些面积单位?

(2)这些面积单位是怎样规定的?

(3)用手比划一下1平方厘米、1平方分米、1平方米的.面积有多大.

生:一排有5个1平方厘米,有4排,一共有20个1平方厘米.这个长方形的面积就是20平方厘米.

设疑:这个长方形的面积是多少?为什么答不出?你能想想办法吗?

导语:有些长方形的面积用数方格的办法数不出来,有些面积比较大的,如长方形操场,教室地面,用摆的方法也很不方便.这就需要我们必须找到长方形面积的计算方法.下面我们一起研究.

沿长边依次摆6个小正方形,长是6厘米.

沿宽边依次摆3个小正方形,宽是3厘米.

问:通过上面的练习,你能知道长、宽与什么有联系吗?

生回答后师总结:一排摆几个,长就是几厘米;摆几排,宽就是几厘米.表内板书:

2.实践感知.

3.观察讨论.

讨论:仔细观察表格内长、宽、面积的数据,2人一组讨论:长、宽与面积之间有什么关系?

4.深入探讨.

师:所有长方形的面积都等于长乘以宽吗?我们再来研究一个例子.2人一组用12个1平方厘米摆成长方形,比一比哪组摆的方法多.1个同学做记录.

你能总结出长方形面积的计算公式吗?

如果用S表示面积,a表示长,b表示宽.字母公式是:

师:复习中画面七那个长方形你能准确地求出它的面积了吗?

(2)求的是什么?(周长)你能指一指求的是哪里吗?

(3)求的是什么?请你指出来.

(4)为什么对?

3.动手实践.

师:教室里有很多物体的面是长方形的,请你测量并计算它们的面积.

(2)汇报分工情况.

(3)分小组进行测量.

(4)反馈交流.

选测量正方形的小组,问:长和宽相等了,是什么形状?你能总结出求正方形面积的计算公式吗?

板书设计:

长方形课件 篇5

【教学内容】

九年义务教育六年制小学教科书(人教版)《数学》第七册“长方形面积的计算”。

【教材分析】

“长方形面积的计算”是在学生知道面积的含义。初步认识面积单位和会用面积单位六接录面积的摹础上进行教学的。它是学生学习其他平面图形而积计算的基础。教材注重加强学生的动手操作。找出长方形面积与边长的关系。让学生自己总结面积计算公式。这样安排。既发展了学生的思维。又培养了学生的探究能力。因此。如何掌握长方形面积计算公式与如何应用公式解决实际问题。成为本节课的重点。

【学情分析】

学生在学习本节内容之前。己经学习了面积的概念及常用的面积单位。并且会用面积单位直接I.m.平而图形的面积。但用这种方法比较麻烦。而且有时会行不通。这些都引起了学生的思考。因此。

他们迫切需要探求一种比较简便的方法。那么如何去探求—即学生体验、经历长方形面积公式的形成过程就是本节课的难点。

【教学目标】

1.知识与技能:理解并掌握长方形面积计算公式。并能利用公式解决简单的实际问题。培养学生的归纳推理能力和操作能力。

2.过程与方法:让学生以独立思考、合作探讨、动手操作等形式经历长方形面积公式的形成过程。

3.情感与态度:培养学生的团结合作精神及科学探究精神。

【教学准备】

教具:多媒体课件、每组一个1平方厘米和1平方分米的小正方形。

学具:分组实验单、每生10个1平方厘米的小正方形及一张无格长方形彩纸(长、宽均为整厘米数)。

【教学过程】

一、创设情景。激趣导入1.游戏:看谁涂得快。

准备:每组一个1平方厘米和1平方分米的小正方形。

规则:(1)每小组可以任选一正方形为其涂色。

(2)以先涂完色的为胜。

2.学生操作完后。问:

你们获胜的秘密是什么?或问:你们组为什么选涂小正方形?

总结出:图形的而积也有大小之分。

那么。怎样知道一个图形的具体面积呢(导入新课并板书课题:长方形面积的计算)?

【设计意图】:利用儿童的好胜心。激发他们的学习兴趣。拉近师生关系。创设一种民主和谐的气氛。使学生觉得数学处处都在,体验数学的魅力。

二、动手操作。探索新知1.独立思考。猜测设疑:

(1)下面长方形的面积大约是多少?你能验证一下吗(出示学具中的长方形彩纸)?

(学生可能用I平方厘米的面积单位去录。也可能直接估计,这些都是可以的。)(2)出示学校长方形花坛的平面图。问:要知道这个花坛的占地面积有多大。你有什么好办法吗(让学生说出自己的办法)?

是否有一个更简捷的度最方法呢?让我们一起来寻找吧。

【设计意图】:允许学生‘。猜测”是新课标的要求,也是学生经历探索过程的必由之路。

2.小组合作。操作初探:

(拼摆:让学生用准备好的而积是1平方厘米的小正方形拼摆长方形。用几个拼都可以。并完成分组实验单。

(2)讨论:观察实验单。你们能发现什么?

(3)交流:分组展示自己的研究成果。通过交流。学生的发现可能有:

①每行摆的个数与长方形长边的厘米数相等;②摆的行数与长方形宽边的厘米数相等;③所用的小正方形的总个数与长方形面积的平方厘米数相等。

3.验证总结:

(出示图形:你能准确说出下面长方形的.面积吗?为什么(每格1平方厘米)?

(2)用1平方厘米的小正方形实际验证。

(3)出示“猜测设疑”中的长方形彩纸:

问:要知道这个长方形的准确面积。需要什么条件?

学生实际测量并求出面积。

(4)归纳概括出长方形的面积公式:

长方形的面积=长X宽(板书)

【设计意图】:动手操作永远是解疑的良方。只有放开学生的手脚,才能解放他们的思维,而且通过拼摆、观察、交流,让他们经历知识的形成过程。使学生的抽象思维又一次得到锻炼。

三、分层练习。实践应用

1.基本练习:

(1)计算下面图形的面积:

(2)一台电视机外壳的一个面长是44厘米。宽是34厘米。

它的面积是多少平方厘米?

2.发展练习:

一块长方形的面积是36平方分米,它的长和宽可能是多少?

3.综合练习:

让学生任选身边的长方形平面。测录并求出它们的面积。

四、联系实际。贴近生活

在“非典”的防治工作中。学校要求每班都要出相关内容的黑板报。请你设计一下黑板报的格式。要求必须有长方形的“宣传画”及长方形的‘,留言板”板块,其他可以自由发挥。看谁的设计最美观、最合理,并算出相应板块的面积。

【设计意图】:练习的设计要有层次性。数学源于生活。要让学生利用所学的数学知识解决身边的实际问题,体验数学的价值。

【课后反思】

本节课的设计。注重了学生的动手操作。让学生通过拼摆、观察、合作,经历整个知识的形成过程,循序渐进地掌握长方形的面积公式,突出体现“做数学”的思想,突出了数学的应用性。不足的是“导课”和“猜测设疑”用的时间过长,整个教学节奏把握不够紧凑,这是在以后的教学中需要改进的地方。

长方形课件 篇6

一、说教材

1.《长方形和正方形的面积计算》是苏教版小学数学三年级下册第82-83页的内容。在此之前学生知道了面积的含义,初步认识面积单位,以及学会用面积单位直接量面积的方法。这节课就在这个基础上进行教学的。学好本单元的内容,不仅有利于发展学生的空间观念,提高解决实际问题的能力,而且还能为以后学习其他平面图形面积计算的方法打下坚实基础。于是,我对教材进行了认真地研究。

2.本课教材主要分成四个部分。第一部分教材例1通过先让学生用若干个1平方厘米的小正方形摆成3个不同的长方形,并填好表格,让学生通过这个操作初步体会长方形的面积与它的长与宽之间的关系。第二部分例2通过测量面积及试一试,探索并归纳出长方形的面积计算公式。第三部分从正方形与长方形之间的关系,从而推导出正方形的面积计算公式。第四部分练一练主要目的在于巩固新知,让学生能利用新知解决实际问题,促使学生积极、主动、创造性的思维。

3.由此我根据教学内容把推导长方形和正方形面积计算公式的过程作为教学重点,而学生通过自己动手操作、发现长方形的面积公式的过程又是教学的难点。

4.教学正方形的面积计算公式时,我没有把它作为例题来教学,而是在练习中,先计算长方形面积,再演示宽不变,逐次缩短,最后演变成长与宽同样长。学生从长方形的面积计算迁移到正方形的面积计算,发展了学生的推理能力和空间观念。

二、教学目标

基于本课的教学内容及新课程标准的要求,确定本节课的教学目标如下:

①引导学生有序观察,动手实验,自主探究发现、验证并归纳出长方形面积计算的公式,会运用公式正确地计算长方形的面积,利用知识的迁移由长方形面积的计算公式推导出正方形面积的计算公式。

②培养学生用数学眼光去发现问题的意识,积极思考解决问题的方法,培养学生观察、质疑、分析、解决问题和动手操作的能力

③让学生在实验操作中体验学习的乐趣,在合作与交流中,培养学生的参与意识和合作能力,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

三、教法与学法:

三年级学生的思维形式正处在由形象思维过渡到抽象思维的阶段。因此,本节课的教学尽量运用直观教具、学具、操作、多媒体等手段,为学生提供丰富的感性材料,调动学生多种感官(手、眼、脑)参与知识的形成过程。我尽量多让学生自己动手操作,让他们去探索、去发现、去归纳,在学生探索的过程中,教师只是启发者、引路人,让学生真正成为课堂的主导者。

基于以上分析,我设计了如下教学过程

四、教学过程

第一个环节

(一)问题导入,激发兴趣:

在这里我安排了3道题,第1题用数面积单位的方法求面积。

第2题用面积单位去量的方法求面积。第3题出是一道既难数有难量面积单位的情景下引入新课,这样设计有梯度的问题层层导入,引发了学生学习新知的欲望,激发学习兴趣。

第二个环节

(二)实践探究,发现方法

1.动手操作。

先让学生用1平方分米的小正方形,小组合作,在纸上摆一摆,摆出3个你们最喜欢的长方形,并填写下表。

2.反馈交流。

填完表后,老师带领学一起观察摆成的每个长方形的长是多少厘米?宽是多少厘米?用了多少个1平方厘米的小正方形?面积是多少?

老师着重引导学生观察长方形的的面积与它的长和宽有怎样的联系?谁来说说你发现了什么?

3.初步发现

学生通过观察初步发现:长与宽积正好等于长方形的面积

【评析:这里让学生动手操作并观察思考,学生在解决实际问题中初步发现长方形面积的计算方法。】

教师抓住长方形的面积=长×宽这个发现进入第三个环节。

(三)动手实验、验证方法

师:这位同学的发现对不对呢?下面我们再来做第二实验。

请各小组测量例2的第一个长方形的长、宽,预留位置

长方形课件 篇7

活动目标:

1、通过观察初步感知长方形(四条边、四个角)的特征。

2、培养幼儿的观察能力和动手操作能力。

活动重点:初步感知长方形的特征

活动难点:正确粘贴相应大小的长方形

活动准备:课件 房子图形 若干和空格大小相等的长方形 香糊

活动过程:

一、初步了解、感知长方形的特征

1、看课件。师:今天有个图形宝宝来给小朋友表演节目。想知道是谁吗?(长方形)

以游戏口吻介绍长方形的特征。

2、小朋友记住我了吗?现在我们来玩个变魔术的游戏看我变出什么来(接着看课件)说说哪些是长方形

3、在找找教室里的长方形

4、现在长方形宝宝要表演节目了看看它做什么?(转呀转 翻跟头)

二、感知不同的长方形

长方形宝宝翻跟头翻到了长方形的家里去了,看看长方形的家里都有哪些长方形?

(有大的有小的,有红的,绿的……,)这些长方形宝宝有相同的地方吗?

三、动手操作

1、现在长方形宝宝听说有小动物需要他的帮助,他要和小朋友说再见了。

2、小动物遇到什么困难了。我们去看看。

3、出示房子图。原来是小动物的房子被风吹坏了,有的地方要补上,小朋友你们愿意帮小动物吗?(提示幼儿选择合适的长方形补房子)。

活动结束

长方形课件 篇8

二、解决问题。

(一)、猜想,长方形的面积与什么有关?与长和宽有怎样的关系呢?

(二)、学生操作发现规律。

1、分组活动,出示活动要求。

(1)组长主持活动,活动中互相配合,控制音量。

(2)用小正方形摆成不同的长方形(个数可以不同),并照表做好记录。

2、活动反馈。

操作完毕,反馈活动情况。结合反馈结果师板书黑板上的表格:

3、抽象概括:

引导学生通过观察、比较,你发现了什么?归纳得出长方形所含的平方厘米正好等于长和宽所含厘米数的乘积。师生共同抽象概括出长方形的面积计算公式,并板书:长方形的面积=长×宽

1、验证:是不是所有的长方形面积都可以用长×宽来计算?出示简单的图形面积计算。让学生快速说出答案。

2、观察讨论正方形的面积公式。

师:这是什么图形?正方形的面积可以怎样计算呢?学生解答。

反馈:对呀!正方形本身就是特殊的长方形嘛!只是长和宽相等的长方形,我们习惯上把正方形的长和宽叫边长,所以正方形的面积= 边长×边长(板书)

三、巩固应用。

1、计算78页“做一做”

2、我们探究学习了计算长方形正方形面积的方法,在生活中有很多很多的长方形存在着,这些长方形的面积都是可以运用今天探究得到的方法来计算的,想不想试一试啊?计算数学书本封面和学生卡、黑板的面积。先估计再同桌合作量一量、算一算。(取整厘米数)问:你首先做了什么?

4、已知正方形的边长,对折一次后是什么图形,面积是多少?(备用)

本文的网址是//m.zfw152.com/a/5714644.html

相关推荐
最新更新
提职述职报告个人(精品15篇)

提职述职报告 12-03

平方根和算术平方根的区别

04-12

写烤鸭的作文集合

烤鸭的作文 12-03

珍惜生命的作文五篇

珍惜生命的作文 12-03

颠倒歌音乐教案

颠倒歌音乐教案 颠倒歌教案 12-03

端午朋友圈文案30句

端午文案 12-03

平方根小学教案

04-12

最经典的最暖心的早安问候语(精选38句)

早安问候语 12-03

咨询方案(收藏15篇)

咨询方案 12-03

远足作文

远足作文 12-03

赞美春天作文

赞美春天作文 12-03

推荐访问

全部分类