<

趣祝福 · 范文大全 · 方程意义教案

方程的意义的教案热门七篇

时间:2023-12-23 方程意义教案 方程教案

老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。只有写好上课用的教案课件,才能展现更完整课堂教学,写教案课件要具备以下步骤:此外,您还可以浏览范文大全栏目的跑步正能量感言句子(必备70句)

1. 确定教学目标:明确课程的教学目标是编写教案课件的首要步骤。通过确定教学目标,可以帮助老师有条不紊地编写教案课件,确保课程内容的有效传达。

2. 分解知识点:将整个课程的知识点进行分解和分类,有助于教师更好地组织教案课件的内容,使教学过程更加清晰和系统化。

3. 设计教学内容:根据每个知识点的重要性和难易程度,设计相应的教学内容。可以包括文字说明、图表、示例等,以便学生更好地理解和掌握知识。

4. 制作课件结构:确定教案课件的结构,包括导入部分、知识点讲解部分、练习和巩固部分、总结等。通过良好的结构设计,可以使教学过程更加有条理,学生易于跟随和理解。

5. 选择合适的多媒体:根据教学内容的需要,选择合适的多媒体素材,如图片、视频、音频等,以增加教学的趣味性和吸引力,帮助学生更好地理解和记忆知识。

6. 考虑学生的学习需求:在编写教案课件时,要考虑学生的学习需求和能力水平,选择适合他们的教学方法和策略。例如,对于学生较弱的知识点,可以增加一些演示或练习的环节,帮助他们更好地理解和掌握。

希望通过这些步骤,你能够编写出更好的教案课件,为课堂教学提供更完善的支持和指导。

方程的意义的教案【篇1】

教学内容:人教版实验教科书5354页

教具学具准备:课件

教法:引导法

学法:讨论、合作、观察、探究。

教学过程:

一、创设情景引入

师:你们玩过跷跷板吗?下面老师给你们讲一个跷跷板的故事。两只小青蛙在玩翘翘板很开心,一只小熊也要玩,同学们,你们说会怎么样?(没法玩)为什么?有什么办法也让小熊也能玩的开心呢?(让学生思考讨论)学生回答后师总结出要让跷跷板两边平衡。

同学们,你们知道吗在数学里也有这样的跷跷板,今天我们就来研究我们数学里的跷跷板。引出课题并板书。

二、探究新知

出示主题图(1)

请学生说说在这副图里你获得了那些信息?(天平两边平衡,一个空杯重100克。)

出示主题图(2)

请学生说说在这副图里你获得了那些信息?(在空杯里加一杯水后天平不平衡了。)

问:你们知道一杯水有多重吗?(不知道)

如果要你现在表示这杯水有多重,你有办法吗?

(学生思考,可以讨论)

用未知数x来表示水的重量,那么杯子和水一共有多重又该怎样表示呢?(指名回答)

100+x

出示主题图(3)

请学生观察这副图里的两架天平,发现了什么?(不平衡)

哪边重一些呢?你们能用数学算式来表示这两架天平的状况吗?

(学生分组讨论,教师巡视指导)

学生汇报:用>、<符号来表示哪一边重。(学生回答后,师板书)

100+x>200100+x<300

出示主题图(4)

请学生观察这副图里的天平,发现了什么?(平衡了)

你们能用数学算式来表示这天平的状况吗?(学生思考后教师指名回答)

100+x=250(师板书)

观察比较:

100+x>200

100+x<300

100+x=250

同学们,我们刚才写的这三个数学算式有什么不同?

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

师:你们能写出等式吗?(学生自由的写)

把学生写的等式有选择的用实物展示器展示出来。

如:3+8=11100-90=10

3+x=2560-x=7

10x=80070x=7等等

请学生把这里的等式分类

(学生小组合作分类)

学生汇报后让学生说出分类的理由。(有的含有未知数x,有的没有未知数x)

教师总结:像100+x=250这样的含有未知数的等式,称为方程。(板书)

(学生写一些方程)教师把学生写的在实物展示器展示出来。

三、实践应用

1、观察分类

①30+20=50②2x+50100

③802x④3x=180⑤x11=5⑥100+2x=503

⑦x-18=24⑧6020=3

⑨100+20xx0+50

2、下面式子哪些是方程,哪些不是方程?

6+x=14

3+x

502=25

6+x23

51a=17

x+y=18

3、判断

1)等式都是方程。()

2)方程都是等式。()

3)3x=0也是方程。()

4)含有未知数的式子叫方程。()

5)方程是等式,所以等式也叫方程。()

四、小结

同学们,今天你们有知道了什么知识呢?

五、板书设计

方程的意义

不平衡平衡

100+x>200

100+x<300100+x=250

像100+x=250这样的含有未知数的等式,称为方程。

教学目标

1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系,使学生初步理解等式的基本性质。

2.能力目标:培养学生认真观察、思考分析问题的能力。发展学生思维的灵活性。

3.情感态度与价值观:加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

教学重点

使学生初步理解等式的基本性质,理解与掌握方程的意义。

教学难点

帮助学生建立方程的概念,并会应用。

方程的意义的教案【篇2】

教学目标:

知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。

能力目标:培养学生认真观察、思考分析问题的能力。

情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。

教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

教学难点:会用方程表示简单情境中的等量关系。

教学准备:教学课件。

教学流程:

一、导入新课:

教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

二、探究新知:

(一)探究方程的意义:

介绍天平:(课件出示天平图)

天平实验,引出方程:

1、第一步,称出一只空杯子重100克;

第二步,往杯子里倒人约X克水,使天平出现倾斜。

第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)

2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

小结:像100+x=250这样的含有未知数的等式,称为方程。

3、深入探讨理解:

①根据方程的含义,方程应该具备哪些条件,

②方程与等式之间有什么关系,你能用集合图来表示吗?

写方程,加深对方程的认识:

三、练习巩固:

1、完成课本第54页做一做。在是方程的式子后面打上“√”。

判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

2、判断,对的在括号里打√,错的打×。

(1)等式都是方程,方程都是等式。()

(2)含有未知数的式子叫方程。()

(3)不是方程。()

3、用方程表示下面的等量关系。

(1)加上35等于91。(2)的3倍等于57。

(3)减31的差是86。(4)7.8除以等于1.3。

4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。

(1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。

(2)某班有男生23人,女生χ人,共有50人。

(3)小红买了5支铅笔,每支χ元,共付9元。

(4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。

(5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)

四、课堂总结:

教师:想一想,这节课学习了什么?你有哪些收获?

课后反思:

学生对什么是方程都有所了解,本节课是成功的。

方程的意义的教案【篇3】

教学内容:教科书第1-2页例1、例2。

教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

教学准备:天平、砝码。

教学重点及难点:

理解方程的意义,方程与等式的关系。

教学过程:

一、借助天平体会等式的含义。

(1)你会用等式表示天平两边物体的质量关系吗?(50+50=100502=100)

(2)你还能写出这样的等式吗?根据学生举例写下2~3个。

(3)你感觉什么样的式子是等式呢?

用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的;

二、感知不等式,教学方程的意义。

1、出示实物天平:

(1)左边放克,右边放克,可以用什么式子来表示?

板书:

(2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)

(3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?

交流并板书+x+x=+x

(4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。

2、例二的内容

(1)学生在作业纸上完成例二的内容。集体交流汇报。板书

x+5100x+50=150x+502002x=200

(2)概括概念

A、观察黑板上的算式,你能把他们分分类吗?

B、你分类的依据是什么?

第一次分类:按照等式、不等式分

(老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)

还能再分下去吗?

第二次分类:按既含有字母且是等式分

(此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)

C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)

像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。

D、完成试一试

三、突出方程概念的内涵与外延

1、讨论判断

(1):哪些是等式,哪些是方程?

6+x=1436-7=2960+23708+xy-28=35

x+4〈14m+n=100

(2)在判断之后,你对等式和方程有什么新的认识呢?

可能有:未知数可以用x、y等多个字母表示;

一个等式中可以含有多个未知数;

等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的比较辨析。)

(3)讨论比较,辨析概念。

讨论下面的说法正确吗?

所有的方程都是等式。

所有的等式都是方程。

(4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?

(5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)

(6)引导质疑你还有什么疑问?

四、用方程表示直观情境里的相等关系

(1)看图列方程

(2)用方程表示下面的数量关系。

(3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?

(说明:并不是任何时候都要列方程的。)

五、总结提升,介绍方程的数学史

板书设计:方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式是方程。

教学后记:

方程的意义的教案【篇4】

教学内容:教科书第1~2页的内容及练习一的1~3题。

教学目标:1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、经历从生活情景到方程模型的建构过程。

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:使学生理解方程的含义,感受方程思想

教学难点:使学生理解方程的含义,感受方程思想

课前准备:天平、砝码

教学过程:

一、创设情景,抽象数学模式。

1.出示实物天平。

师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

2.演示:

出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)

师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢(演示)

学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

3、出示例1

说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

(板书:含有等号的式子叫等式)

二、引导分类,概括方程概念。

1、学生自学

要求:

(1)学生在书上独立填写,用式子表示天平两边的质量关系。

(2)小组同学交流四道算式,最后达成统一认识:

X+50>100X+50=100

X+50<100X+X=100

根据学生的回答,教师板书这4道算式。

(3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

A、想一想你分类的标准是什么?

B、把自己分类的情况,写在纸上?

学生可能会这样分:

第一种:

X+50>100X+50=100

X+50<100X+X=100

第二种:

X+50>100X+X=100

X+50<100

X+50=100

2、概括概念

过渡:看来同学们都能按自己的标准对式子进行分类。

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)

B、你能说说什么叫方程吗?

C、学生发言,概括出:含有未知数的等式叫做方程(板书)

提问:你觉得这句话里哪两个词比较重要?含有未知数等式

那X+50>100、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程。

3、举例方程、理解概念

你能例举出方程吗?谁能举的与刚才不一样吗?(用字母Y表示、有难度的方程)

以前我们见过方程吗?

三、完成试一试、练一练

1、试一试

(1)观察左边的天平图,说说图中的是数量关系,列出方程。

(2)观察右边的图,弄清题意,列出方程。

1、练一练第1题

(1)观察,找一找哪些是等式,哪些是方程?

(2)交流:

(3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

(4)判断:方程是含有未知数X的等式。..()

2、练一练第2题

(1)先写一些方程

(2)组织交流

3、练一练第3题

四、课堂作业:

1、练习一第1题先独立完成在交流

2、练习一第2题

(1)先说一说每题的数量关系

(2)独立列出方程

(3)交流

3、练习一第3题

(1)说一说天平两边有什么物体,这些物体的质量间有什么关系

(2)独立思考列出方程

(3)观察方程,初步感知等式的性质。

习题超市:

1、讨论判断:下面的式子哪些是方程,哪些不是方程?

8x=06x+24+2>102y5=10n-5m=15

17-8=910<3m6x+3=11+2x4+3z=10a8=60

2、根据下面的信息,你能列处几个不同的方程?

我比莉莉重25kg,,我重61kg。

我186cm。

我身高xcm,我比爸爸矮40cm。

我重ykg。

板书设计及课后反思:

方程的意义

含有等号的式子叫等式

X+50=100

X+X=100像X+50=150、2X=200这样含有未知数的等式是方程。

教材简析:

等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现=,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了质量这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的安排有三个特点:

第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择=>或<时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

第2页的试一试和练一练第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.84=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

方程的意义的教案【篇5】

教材简析:

《方程的意义》一课是人教版小学数学五年级上册第四单元《简易方程》中的内容。本节课的主要内容是根据天平写出式子,并通过类比分析归纳出方程的概念,并根据概念学会正确判断一个式子是不是方程以及利用方程概念解决问题。方程这部分知识,在初等代数中占有重要的地位,方程这部分知识的学习,是学生从算术方法解决问题到代数方法解决问题的过渡,因此,在教学中起着承上启下的作用。

学情分析:

学生在学习《方程的意义》之前,在低年级的数学学习中均有填算式中的括号、数字谜等不同形式的思维训练,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,这些都为理解方程意义起着铺垫作用。

教学目标:

1、了解方程的意义,弄清方程与等式的联系与区别。

2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

教学重点:

了解方程的意义

教学难点:

完成数量关系到等量关系的过渡,构建方程的概念。

教学过程:

一、谈话导入,认识天平:

同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的,它就是天平。

【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,形象生动,学生容易找到旧经验与新事物的联系,形成表象】

二、利用天平,写出式子

在上一节数学活动课中,我们认识了天平,利用天平称量了物品的质量。

下面我们就一起来利用天平来测量一杯水的重量。

【在这部分教学中,教师通过演示再现天平测量物体的过程,水的重量是未知的,用字母X来表示,这部分教学的重点是让学生经历了由形象的天平左右两边的平衡关系过渡到用抽象到数学符号表示的思维过程,为突破教学难点进行铺垫。】

三、合作探究,认识方程

1、测量物品,写出式子

下面请同学们再次利用天平测量桌面上物品的质量,或者利用天平比较物品的轻重,并且根据天平的平衡关系写出式子。最后将你们小组写出的式子按照一定的标准进行分类。

【《课程标准》中明确指出,数学课要让学生积累数学基本的活动经验。数学作为一种普遍适用的技术,是人们生活、劳动和学习必不可少的工具,因此基本的数学活动经验要在小学数学课中显得尤为重要。在这部分的教学中,我经历了实验---不实验——再实验的设计过程。第一次教学中,我采用了让学生动手操作,但在实验中,学生由于对天平的好奇以及操作的不熟练,使大部分时间浪费在了感知新事物上,没有完成教学任务;第二稿中,我放弃了实验,让学生直观看教师的大屏幕演示,然后写出式子,学生再根据图片,写出式子,结果整节课学生就在不停地对着抽象的符号写和算,对知识没有形成表象,练习效果不佳。后来,在网络备课和教研员的指导下,我在课前加入了数学活动课,让学生熟悉天平的操作过程,在课堂中,将重点放到利用天平写出式子这一环节,学生目的明确,操作熟练,高效完成了预设的教学目标。】

2、交流汇报,归纳概念:

教师选取了每个小组有特点的式子将其呈现在黑板上,学生根据自己的经验进行分类,同时教师进行板演:

等式 不等式

含有未知数 3x=180 50+2b>180

100+y=50×3 80

不含未知数 50×2=100 100+20

根据板书,教师讲解:像 3x=180、100+y=50×3这样,含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

【"领悟数学基本思想"是新课标中数学中最核心的要求。数学思想是数学知识和方法在更高层次上的抽象与概括。在本节课中,我更注重了对知识的类比归纳,()让学生感知方程与等式的关系,与不等式的区别,最后归纳总结出方程的特征。】

3、概念演绎,建立模型:

刚才同学们根据天平所写的式子中还有方程吗?

老师在测量中的这几个式子中哪个是方程?

你能根据方程的意义也写出几个与众不同的方程吗?

【通过这三个内容的练习,既完成了对概念的基本理解与应用,同时又将前面教学中只有乘法和加法的方程式子进行补充,学生写出了将含有减法与除法的方程,使方程的基本模型更清晰准确。】

四、练习应用,巩固新知

在练习中,我设计了这样几个题目:

1、 判断式子是不是方程

2、 根据线段图写方程

3、 根据数量关系写方程

4、 判断是否是方程

5、 方程与等式的关系

【通过由浅入深的练习,学生从基本的判断到实际的应用,从具体的图片写方程到文字的数量关系写方程,最后通过一道判断题,将等式与方程的关系用集合图来表示,使学生对方程的概念的理解更准确,应用更灵活。】

五、拓展延伸,感受文化

早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此通过这部分知识的讲解,学生对方程有了更全面的了解,同时激发了学生的学习钻研热情。】

方程的意义的教案【篇6】

教学目标:

1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生理解方程及等式的意义。

3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程:

一、 创设情境,激趣导入。

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)

我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。

二、合作探究,获取新知。

(一)理解等式的意义。

找出白鳍豚这组资料的等量关系,用字母表示。

1、 师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?

1980年比20xx年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。

1980年只数—20xx年只数=300只

1980年只数—300只=20xx年只数

20xx年只数+300只=1980年只数

2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出20xx年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)

3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)

4、借助天平来研究等式。

(出示天平)你对天平了解多少?谁给大家介绍一下?

师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。

师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10

师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)

师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)

(二)理解方程的意义。

1、 找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:

(1) 找出人工养殖的只数与野生的只数的关系,用文字表示出来。

(2) 用含有字母的等式表示出这个关系。

(3) 在天平上表示出这个等式 。

小组合作探讨,汇报交流,得出 :人工养殖的只数x10=野生只数

10x=1600 ,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600

只 。我们通过分析它们之间的等量关系得出了等式10x=1600.

2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)20xx年只数×3+100=20xx年的只数。

(2) 3×+100=1000或1000-3×=100 (3)天平左盘3x和100,右盘1000.

我们通过分析它们之间的等量关系得出了等式3x+100=1000.

3、 揭示方程的意义

师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)

我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)

师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。

师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)

师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?

三、巩固练习,加强应用。

看来同学们已经掌握了今天所学的知识,下面老师来考考你。

课件出示课本自主练习1,2,3,4。

四、回顾反思,总结提升。

通过这节课的学习,你有什么收获?

方程的意义的教案【篇7】

教学目标:

(1)使学生理解方程概念,感受方程思想。

(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

教学过程:

一、创设情景,抽象数学模式。

1.出示实物天平。

(实物天平比较小,用屏幕上的天平来模拟实验。)

2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢

(说明两边的重量可能有三种不同的关系。)

用式子描述重量之间的相等关系。

3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

用式子表示两队比分的关系。

红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了分,请你猜一猜,两队的情况会怎样呢?

用式子来表示比分的三种关系。

4.创设四个情景。

(1)每个情景中数量之间有什么关系?

(2)你能用关系式清晰地来描述吗?

二、引导分类,概括方程概念。

刚才我们对情景的描述得到了很多式子。

200+200=400182318+2318+2318+=23

280100120425+=7022y+720=1050

1.学生尝试第一次分类。

可能有几种不同的分法。

(1)看是否是等式。

(2)看是否含有未知数。

2.学生尝试第二次分类。

得到四组不同的式子。

3.描述每一组的特征。

4.引导概括方程概念。

含有未知数的等式叫方程。

三、抓等量关系,体会方程本质。

1.演示动态平衡。有等量关系,能用方程表示

2.出示情景(没有等量关系,不能用方程表示。)

出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

3.通过今天这节课,你学到了什么呢?

四、联系实际,应用与拓展。

1.周老师从无锡到徐州来上课。

(1)线段图。

(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。

2.情景图。

本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。

3.开放题。

小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)

方程的意义教学设计的说明

在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

整体的把握:

数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

形式层面含有未知数的等式(是关系的一种)。这是一种静态的结论。

发现层面经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

直观具体层面举出正例或反例。

直觉层面一种数学的意识、一种方程的感觉。

这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)

目标的把握:

经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

过程的把握:

统揽全局基础上的局部聚集,突出知识胚胎的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出知识胚胎的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太散的问题。

经历问题情景数学模型解释与应用的全过程。从问题情景数学模型展开数学化和结构化的过程。再从数学模型解释与应用展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

参考文献:

(1)史宁中、孔凡哲著.方程思想及其课程教学设计数学教育热点问题系列访谈录之一.《课程.教材.教法》第24卷第9期,

(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。

(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

精选阅读

最新方程的意义的教案


方程的意义的教案 篇1

教学内容:教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100 (板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100  x+50=150

X+50100 x+50=150

方程 X+50

方程的意义的教案 篇2

一,教学内容:

"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义

二,教材分析

方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.

三,教学目标

根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.

2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.

3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.

四,教学重点,难点:

教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.

教学难点:正确寻找等量关系列方程.

五,教学设想

概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.

六,教学准备:课件,天平,实物若干等

七,教学过程:

课前准备:利用学具(简易天平)感受天平平衡的原理.

教学过程

学生活动

设计意图

一,创设情景,建立表象

1.认识天平.

2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

(天平两边所放物体质量相等)

3.用式子表示所观察到的情景:

情景一:导入等式

(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

300+150=450

(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

250+250+250+250=1000

或250×4=1000

情景二:从不平衡到平衡引出不等式与含有未知数的等式

(1)

在杯子里面加入一些水,天平会有什么变化

要使天平平衡,可以怎么做

情景三:看图列等式

(1)

x+y=250

(2)

536+a=600

直观认识天平

回忆课前操作实况理解平衡原理

观察情景图,先用语言描述天平所处的状态,再用式子表示

先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解

观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.

通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).

具体的操作比课件演示更具吸引力,而且让学生感觉更真切,注意力更集中.但教师操作过多会显得烦琐且浪费时间,因此要适时结合多媒体的优势,故情境三的出示我选用了课件显示.而且情境三也是为了下一步分类时使学生不会只片面地看问题,如果只有100+x=250一个方程会误导学生含有一个未知数的等式叫做方程,归纳不应建立在单一的例子中,故设计了情境三,引入多几个方程的式子让学生分类.

二,形成概念,探求新知

1.第一次分类:把上面的式子按等式与否可分为哪两类

等式 不等式

300+150=450 100+x>200

250×4=1000 100+x100

猜一猜,下面的式子是不是方程

□+x>52 x÷□

x÷□=78 5×□=24

看图列方程

根据下面的信息找出等量关系列出方程

我们班共有49人,男生27人,女生a人

关系式:男生人数+女生人数=全班人数

方程:27+a=49

小宇每月有30元零花钱,已经花了x元,还剩16元

关系式:已花的钱+还剩的钱=每月零花钱

方程:x+16=30

小红买了b支铅笔,每支0.5元,共付7.5元

关系式:每支铅笔的价钱×支数=共付钱数

方程:0.5×b=7.5

学生根据自己对方程的理解判断一些等式是否方程,并说出理由.

通过观察课件出示的式子及对方程的理解判断一些不完整式子是不是方程.

根据情景图中的等量关系列出方程,加深理解列方程的依据是要找出等量关系.

根据文字信息找出等量关系并用方程表示出来.

练习是学生巩固知识,形成技能的一种重要途径,通过练习加深理解,消化巩固所学的知识,并应用所学知识灵活解决实际问题.

争议是一种很好的激发学生思维火花的教学形式,通过猜一猜的活动,能引起学生强烈的争论,让学生在争议中巩固方程与等式的概念,同时又极大地调动了学生的学习积极性,把学生的注意力高度集中到课堂上.

上面根据情境图列等式时学生还没形成方程的概念,在形成方程的概念后再做这样的练习使学生从直观的情景中感受列方程的关键是找出等量关系,进一步深化对方程意义的理解.而且通过一系列的数学活动使学生认识到现实生活中蕴含着大量的数学信息,数学在现实 世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略.

内容的呈现应用不同的表达方式,以满足多样化的学习需求.先从情景图入手列方程再过渡到在文字信息中找等量关系列方程使学生经历一个由易到难,由直观到抽象的过程,层层递进,形成牢固的知识基础,并为以后学习用方程解决实际问题打下坚实的基础.

四,全课总结,明确收获

通过这节课的学习,你有什么收获

回顾学习过程,总结学习方法.

对本节课的内容作一次整体回顾,可以让学生对本节课的新知识进行一次梳理,深化知识体系,领悟知识要点,体验探索新知识的喜悦,获得成功感.

五,拓展延伸,发展思维

1.在下面的信息中找到合适的等量关系列出方程,你还有别的发现吗

小明今年x岁,爸爸今年36岁,爷爷今年z岁.

爸爸对小明说:我们俩的年龄相差30岁,爷爷的年龄是你的12倍.

在综合的信息中找到相关联的两种量之间的关系列出方程

拓展练习给了学生一个发散思维训练的空间,特别能激起他们思维的火花,往往能产生意想不到的效果,而且在教学中要适当的给学生思维来一个"跳一跳"的机会,开发他们无限的潜能.

概念教学是一种理论教学,理论性,学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性.而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境,使学生通过观察,操作,归纳,类比,猜测,交流,反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心.所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络.

板书设计:

方程的意义

(含有未知数的等式叫做方程)

等式 不等式

300+150=450 100+x>200

250×4=1000 100+x<300

100+x=250

x+y=250

536+a=600

不含有未知数

含有未知数

方程

方程的意义的教案 篇3

教学理念:让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

教学目标:

1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、 会用方程表示数量关系。

3、 培养学生观察、描述、分类、抽象、概括、应用等能力。

4、 感受方程与现实生活的密切联系,体验数学活动的探索性。

重点:理解方程是含有未知数的等式;

难点:方程的意义抽象的过程。

课前谈话:渗透平衡和等量(谈体验)

教学过程:

一、激情导入:

出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

二、探究新知:

1.对不同的式子进行分类(不要有任何要求)

让学生先独立思考,然后小组合作交流自己的想法。

2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

让小组的代表说说自己组是怎样分类的?为什么这样分类?

3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)

4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)

5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。

6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

7.生举例。

8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

10、判断两句话:所有的方程都是等式,所有的等式都是方程。

11、画图表示方程与等式之间的关系。

三.应用练习

1.判断下列式子是不是方程。

2.看图列方程。

3.根据题意列方程。

四.拓展延伸

1、谈谈自己在知识和情感上的收获。

2、送给同学们一个方程:天才+x=成功。

方程的意义的教案 篇4

教材分析:

方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个什么样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,从而由不等到相等,引出含有未知数的等式称为方程。

在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小朋友写方程,让学生初步感知方程的多样性。

“做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。

“你知道吗?”的阅读资料简要介绍了有关方程的一些史料。让学生只需感知,不作记忆的要求。

学情分析:

五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,从而理解概念,帮助学生更好的学习。   

教学目标:1. 通过天平演示,使学生初步理解方程的意义;

2. 使学生能够判断一个式子是不是方程并能解决简单的实际问题;

3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

重点难点: 判断一个式子是不是方程;初步理解方程的意义。

课前准备:   课件、天平、带有磁铁的卡纸、彩色记号笔。

教学过程:                                                           修改意见

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、创设情景,导入新课

1.同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和爸爸一起玩,会出现什么样的结果?(翘翘板摇晃不平衡)

师:怎样才能保持两边平衡呢?(让妈妈也加入)

小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。

三、探究新知

1、师:在数学中与翘翘板原理一样的工具,你知道是什么吗?(生答:天平)

2、介绍:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。

2.课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。

师:请看这幅图。

思考:看了这幅图你知道了什么?生答。

师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)

3. 课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。

师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。

问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)

问:如果水重x克,你能用一个式子表示天平两边的结果吗?

生回答后,课件、卡片出示:100+x>100

4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。

师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。

师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)

师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。

学生回答后课件、卡片出示: 100+x<300

问:观察列出的两个式子,有什么共同的地方?

这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)

问:能再举几个这样的不等式吗?

(学生列出不等式,教师选择两个写在卡片上贴于黑板。)

5. 课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。

师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。

(学生看到都说:平衡了)

问:谁来表示这个式子?

学生回答后课件、卡片出示:100+x=250

问:为什么用“=”呢?(平衡就是相等了)

问:哦,那这个式子与刚才两个不等式比较最大不同是什么?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)

问:能再举几个这样的等式吗?

(生举例,教师选择三个写在贴于黑板的卡片上。)

这时黑板上的卡片有:

300+200=500               100+x<300

100+x>100                100+x=250

80+x>100                 100+50<300 

5a=40            x+200     x+x=8

三、探究交流,抽象概括

1.分类、建构概念

让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。

学生讨论。

问:谁来说说你们是按照什么标准分的?

(1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。

(2)让按“是否含有未知数”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(含有未知数)那这几个呢?(没有未知数)

问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。

(或者让按“是否是等式”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(是等式)那这几个呢?(不是等式)

问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。

根据学生的思路来讲。)

问:你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)

2.理解、巩固概念

师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)

师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。

写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。

小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

(出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

6+x=14     3+x    50÷2=25    ab=18

6+x>23       51÷a=17       x+y=18

问:通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用x表示。

(2)未知数不一定只有一个。

四、巩固提高,形成技能

1.判断

下边哪些式子是方程?(课本54页“做一做”)

35+65=100       x -14>72

y+24            5x+32=47

28<16+14       6(a+2)=42

2.你知道吗?

课件动态显示关于方程的小知识。

你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

3.练练思维

孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?

某同学今年的年龄的2倍是22岁,他今年几岁?

4.提高智慧

小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?

5.数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)

(1)□ +x > 40   (不是)

(2)x÷□=80      (是)

(3)3□=24      (不一定)

让学生判断并说明理由。

(第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)

五、总结提升。

回想一下刚才我们上课开始写的那个表示我们全校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!

作业设计: 

1.作业本25页。

2.口算一页。

板书设计: 

方程的意义 

其他式子   

含有未知数的等式 

3077+ x

等式  

不等式            

像这样含有未知数的等式,叫做方程。 

方程的意义的教案 篇5

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

理解并掌握方程的意义。

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

二、教学例2

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习

1.完成练习一第1题

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题

五、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

六、作业

完成补充习题

板书设计:

方程的意义

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式叫做方程

方程的意义的教案 篇6

教学目标:

1、经历从生活情境到方程模型的建构过程。

2、理解方程概念,感受方程思想。

3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

教学过程:

一、情境创设,初建相等关系模型。

1、师出示天平图,

认识吗?

师:天平可以称出物体的质量是多少。

2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

(左右倾斜各一幅,平衡的一幅。图略)

学生会选择图3,老师顺着学生的思路出示图3天平平衡图

图3为什么能称出两只苹果的质量?

你能用一个式子表示出天平两边物体的质量关系么?

100+100=200

图1和图2为什么不能称出两只苹果的质量呢?

你也能用一个式子表示出天平两边物体的质量关系吗?

100+100>100、100+100<500

3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

你的小脑袋里有等式吗?说一个试试。

除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

师:没想到,同学们对等式是这么的熟悉。

二、借助基础,拓展等式外延。

1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

(书上四幅图略)

选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

突出含有未知数的等式

这些含有未知数的等式你见过吗?

生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

(师出示四幅生活情境图)

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

36-7=29、60+x>70、8+x

6+x=14、7+15=22、5y=40

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

(在活动中理解等式与方程的关系)

五、实践应用,拓展外延。

1、你能看图列出方程吗?

图1:天平(2x=500)

图2:四个物体16.8元

图3: 两杯水共有450毫升

2、从文字表述中找出方程

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

出示:5x=200(可提示:如天平图等)

个别交流的基础上同桌互说。

六、全课总结:学习到现在你有哪些收获?

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

图1:买4个小熊猫玩具,每个x元,120元不够

图2:买3个,每个x元,120元还不够

图3:买2个,每个x元,120元正好

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

方程的意义的教案 篇7

教学目标

1、结合操作活动使学生初步理解方程的意义。

2、会用含有未知数的等式表示等量关系。

3、感受方程与现实生活的密切联系,体验数学活动的探索性

教学重点

结合具体情境理解方程的意义,能用方程表示简单的等量关系。 教学难点:能用方程表示简单的等量关系。

教学过程

活动一:

谈话导入:同学们,你们知道我们国家的国宝是什么吗?对,大熊猫是我国一级保护动物,更是我国外交活动中表示友好的形象大使。动物园的叔叔正在科学的喂养大熊猫呢!

出示信息窗一,引导学生观察情境图,阅读文字信息。

学生观察主题图,认真阅读信息。

活动二:借助天平理解等式。

分组实验:①天平左盘放一个10克的砝码,右盘放一个20克的`砝码,天平不平衡,可以用式子10100 x+50=150

x+50100 x+50=150

方程x+50200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

反馈练习。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

小结。

这节课学习了什么?怎么判断一个式子是不是方程?

提问:方程是不是等式?等式一定是方程吗?

看“课外阅读”,了解有关方程产生的数学史。

练习

完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

作业

练习十一第1题。

方程的意义的教案 篇8

教学目标 :

1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的观察能力、分析能力和解决实际问题的能力。

教学重点:方程的意义。

教学难点 :正确区分等式和方程这组概念。

教学准备:水笔、每人每小组一张白纸、编有号的算式纸、磁铁。

教学过程 :

相信大家都玩过跷跷板,那你知道玩跷跷板时也有数学问题吗?谁能来说说玩跷跷板时是怎样的情景?重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

(一)创设情境,玩一玩

利用这种现象,科学家们设计出了天平,大家看到过天平吗?天平用来干什么的呢?你能说说怎样称质量的。(左物右码),老师也在电脑上画了一个简易的模拟天平。我们也来玩一个类似跷跷板的游戏。

1、演示1:出示天平图,天平在不放物体时,怎样的?可以用我们数学上的什么符号来表示(=),说明左边和右边的质量是相等的。

2、演示2:用式子来表示天平的平衡。现在天平的左边放了(2个50克的鸡蛋),右边放了(100克的法码),左边和右边的质量怎样?你能用式子来表示吗?学生说,贴出相应的算式50+50=100 50×2=100

像这样表示左右两边相等的式子叫等式。你能自己写出几个等式吗?

3、演示3:在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了)用式子来表示天平的不平衡,学生说板书50>20 20<50,那么这样的式子叫什么呢(不等式)。

4、演示4:现在在左边中再放一个不知道多少克的物体,想想这时天平会出现几种不同的状况?这个要求的物体质量,我们叫它未知数,一般用字母χ来表示。你能用一个数学式子来表示这时候的现象吗?

贴出算式 20+χ<50 20+χ>50 20+χ=50有三种可能我们列出了三道式子,其中这两题是(不等式)这一题是(等式)这一个等式,与上面2个等式比一比有什么不一样?(它是一个含有未知数的等式)

5、看图列出算式。350-n=200 2χ=200 x+y=150

(二)分类

在天平游戏中我们写出了那么多式子,你能给这些式子按照一定的标准分类吗?要求:先独立思考,然后以小组为单位进行合作学习,按一定的标准给这些式子分类,并说说分类的理由。请组长及时把分类的结果记录在纸上。只写算式的号码就行。为了分类方便,我们把这些算式编上号。

(1)学生尝试第一次分类。

哪一小组来汇报你们分类的结果,汇报时先说清按照什么标准分的?

如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板把算式纸分开,其余的口头交流。小组派两位同学一人汇报,一人上来分。另一种分法汇报时师板书

(2)学生尝试第二次分类。

按照不同的标准,有不同的结果。得到四组不同的式子。

(等式、不等式、不含未知数、含未知数)

这一种分法,我们得到的这几个式子都是什么式子?(等式)

你能把等式这一类再分成两类吗?怎么分?请学生上来移动纸分两类。师画集合圈并板书含有未知数。那么含有未知数的这类,你也能再分两类吗?师画集合圈并板书等式。

(3)描述每一组的特征。仔细观察这两个圈内的式子你有什么发现?都有什么特点?(含有未知数 等式)。这一类的式子就是今天这堂课我们主要来讨论,叫什么(方程)的意义(板书)

(三)理解概念

1、通过刚才的分类讨论现在根据你的理解,能说说什么是方程?补充完整板书:含有未知数的等式叫方程。从这个意义中你看出了什么?(两个条件都是必要的,缺少任何一个都不是方程)

2、你自己能不能也来编出几道喜欢的方程呢?交流板书。

3、概念巩固

在练习纸上写了几个式子,判断一下它们是不是方程?

反馈,对的有哪几题?对的反问:第1题不是未知数x?,第7题有2个未知数了?第8题未知数跑右边去了?错的是哪几题目为什么?

一个方程,必须具备哪些条件?

4、比较辨析

师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?是不是等式就是方程,方程就是等式呢?让学生自由说

大家说得对不对呢,我们自己来验证一下,先完成判断二,哪些是等式哪些是方程,上下对应。反馈:(得出等式的范围比方程大。等式中有方程,所有的方程都能在等式中找到)

你能用自己的方式来表示等式和方程之间的关系吗?

例如画图或者别的方式,试一试。画在纸上。

反馈:如果用2个圈来表示方程和等式,将判断二的题填入圈内怎样填?演示1、动画演示2,将两圈交叠一起。能不能用语言来表达它们的关系。

(四)巩固

看来同学们对今天学的知识掌握得不错,方程不只是表示天平的平衡,还可以表示生活中许多的数量关系?

1、用方程表示数量关系(乘、除一题两列)

2、看线段图列式(两步计算方程,一题多列)

3、这里还有一些有关我们学校的信息,谁来读一读。

沈家门小学,是普陀区占地面积最大的小学之一。建筑面积约42000平方米,2幢教学楼的建筑面积一共约为4000平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)

四、小结

学了这堂课你有什么想说的吗?

方程的意义的教案 篇9

教学目标:

1、知识与技能:让学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

2、过程与方法:会判断什么是方程,会解一步计算的方程,并会检验方程的解。

3、情感态度与价值观:让学生养成良好的检查、验算的习惯,培养学生的分析能力、观察能力。

教学重点:

理解方程的意义,初步掌握解方程的方法和书写格式。

教学难点:

方程的解和解方程两个概念间的联系及区别,并会应用。

教具准备:

课件、白纸

教学过程:

一、激情导入

1、游戏引出课题:

师:小朋友们,我们来做个游戏吧!老师来说一个词语,你们反这个词语反一反说出来,好吗?看谁反应快!

父母的爱——爱父母;动物的画——画动物;

节目的表演——表演节目;生命的感悟——感悟生命;朋友的理解——理解朋友;

朋友的善待——善待朋友;亲人的召换——召换亲人;儿女的担忧——担忧儿女

问题的答——答问题;方程的解——解方程;

引出课题:板书“方程的解解方程”

这节课我们来研究这里面的知识。

二、讲解概念“等式、方程”

1、找朋友:

师:刚才我们玩的这个游戏中,找到了好几对文字上的朋友。

下面,请你来帮这些式子或数字找找朋友,你愿意吗?

生:愿意。

①、出示课件:同桌之间说一说;指名回答,根据学生回答再次出示课件。

师:这几对好朋友都有什么特点呢?

生:它们相等。(关键引出“相等”)

师:除了把它们用线连起来,还可以用什么方法来表示它们之间是相等的呢?

生:列成一个式子。

学生口答列式,师边板书:80-20=60

2+0.5=2.5

30÷15=2

30×2=60

师:像这样用等号连接起来的,表示左右两边相等的式子,我们把它们取名叫等式。

师:你能举例说几个等式吗?

②、引出方程:

师:那剩下的几个它们找不到朋友,心里不太高兴,你能把它们也连连线写成一个等式吗?

生:能。

学生口答并板书,如:x+3=9

300-b=250

3a=18

师:我们又找到了3对朋友,它们也是等式。那这三个等式跟刚才的四个等式有哪些相同和不同的地方吗?

生:它们有未知数x、a、b。

师:像这样含有未知数的等式,我们给它取名叫方程。

你能举例说几个方程吗?

2、等式与方程的关系:

师:那等式和方程之间到底是什么关系呢?

你能用一种直观形象的方法来表示它们之间的关系吗?

你可以在纸上写一写、画一画,用自己喜欢的方式来表示,四人小组讨论一下。

指名回答。出示课件并板书。

师小结:方程属于等式,里面含有未知数,是一种特殊的等式,但等式不一定是方程。

3、判断练习:

师:我们有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎么想?

生:先看它是不是等式,如果是等式,再看它有没有未知数。如果它有未知数,就是方程;如果没有未知数,就不是方程,而是一般的等式。

师小结:一必须是等式,二必须含有未知数。

师出示课件中的练习:下列哪些是方程,哪些不是方程?

①、下面哪些是方程,哪些不是方程:

35-b=1284÷12=7

5x-32200

100+x100

学生观察后分组讨论:

汇报时用式子表示:

100+x >200

100+x100

4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x72 15÷b=3

5x+32=47 28x分。

师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)

师:哪个班赢了?你能用一个数学式子来表示吗?

(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)

师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)

设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。

情境呈现,抽象模型

1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)

自学提示:

(1)理解教材62页每幅图画及对应式子的含义。

(2)标示出你认为重要的内容。

(3)思考:方程应该具备哪几个条件?

(4)结合你对方程概念的理解,完成教材63页“做一做”1题。

2、合作学习。

(1)你能自己写几个方程吗?小组内互相订正。

(2)组内交流收获。在小组内互相说一说:你学到了什么?

由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。

(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。

(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)

预设:

①全班同学的答案一致,全对。

②一部分小组全对,一部分小组有错误。

这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。

3、整理分类,加深对方程意义的理解。

(1)组织学生分组活动,根据黑板上的算式特点进行分类。

(2)交流汇报,说出分类依据。教师板书。

4、独立完成教材63页“做一做”2题,汇报,集体订正。

5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。

方程的意义的教案 篇10

教学内容

方程的意义和解简易方程(教材第105一107页,练习二十六)。

教学要求:

1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

教 具:

教学天平、小黑板。

学 具:

自制的简易天平、定量方块。

教学步骤:

一、复习

1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)被除数=( )○( )

(6)除数=( )○( )

2.求未知数x(并说说求下面各题x的依据)。

(1)20十x=100 (2)3x=69

(3)17—x=0.6 (4)x÷5=1.5

二、新授

1.理解和掌握“方程的意义”。

(1)出示天平,介绍使用方法(演示)后,设问:

在天平两边放物体,在什么情况下才能使天平保持平衡?

(两边的物体同样重时,天平才能保持平衡。)

(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

板书:20十30=50

指出:表示左右两边相等的式子叫等式。

(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

(3)教学例2(课本105页)。

①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

板书:20+?=100

②等式“20+?=100”中的?是未知数,通常我们用“x”来表示,那么上面的等式可写成 (板书)20十x=100

③比较:等式“20+x=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+x=100”是含有未知数的等式。

④想一想:x等于多少,才能使等式“20+x=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即x=30)

(4)教学例3(课本106页)。

出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

①图中每个篮球的价钱是x元,3个篮球的总价是多少元?(3x)

②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

(板书)3x=234

③这个等式有什么特点?(含有未知数)当x等于多少时,这个等式等号左右两边正好相等?(x=78)

(5)方程的意义:

综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

20+30=50……一般的等式

20+x=200 含有未知数的等式

3x=234 称之为方程

(板书)像20+x=100 3x=234 x—10=35 x÷12=5等,含有未知数的等式叫做方程。

①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

(6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

2.学习“解简易方程”。

(i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

(板书)使方程左右两边相等的未知数的值,叫做方程的解。

例如:x=80是方程20+x=100的解;

x=78是方程3x=234的解。

(板书)求方程的解的过程叫做解方程。

②方程的解和解方程有什么联系和区别?

方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

(2)教学例1:

解方程x一8=16

①教师指出:我们以前做过一些求未知数x的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

②引导学生说出自己的推想过程:题中的未知数x相当于什么数?(被减数)怎么求被减数?(减数十差)

(板书)解方程x一8=16

解::根据被减数等于减数加差;

x=16十8(与原来学过的求x的思路相同)

x=24

检验:把x=24代人原方程

左边=24一8=16,右边=16

左边=右边

所以x=24是原方程的解。

总结有关的格式要求:

①做题时要先写上“解”字。

②各行的等号要对齐,并且不能连等。

③方框里的运算根据可以不写。

④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

指导学生看教材第105一107页。

三、巩固

1.教材107页“做一做”。

2,教材第108页练习二十六第1、2题。

四、练习

教材第108页,练习二十六第3~5题。

作业辅导

1.判断题。

(1)含有未知数的式子叫方程。 ( )

(2)方程是等式,所以等式也叫方程。 ( )

(3)检验方程的解,应当把求得的解代人原方程。()

(4)36是方程x÷3=12的解。 ( )

2.把下面的各关系式写完整。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)除数=( )○( )

(6)被除数=( )○( )

3.解下列方程。(第一行两小题要写出检验过程)

10—x=0.42 4.5x=27 x十5.8=16.4

x÷28=76 2÷x=0.5 x—8.75=4.65

板书设计:

解简易方程

方程的意义的教案 篇11

教学目标:

1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生理解方程及等式的意义。

3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程:

一、 创设情境,激趣导入。

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)

我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。

二、合作探究,获取新知。

(一)理解等式的意义。

找出白鳍豚这组资料的等量关系,用字母表示。

1、 师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?

1980年比20xx年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。

1980年只数—20xx年只数=300只

1980年只数—300只=20xx年只数

20xx年只数+300只=1980年只数

2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出20xx年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)

3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)

4、借助天平来研究等式。

(出示天平)你对天平了解多少?谁给大家介绍一下?

师:你观察的真仔细,天平是一种用来称量物体质量比较精密的'仪器,当指针指在标尺的中央,天平就平衡了。

师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10<20)如何才能平衡呢?(左再放一个10克的砝码)

师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)

师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)

(二)理解方程的意义。

1、 找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:

(1) 找出人工养殖的只数与野生的只数的关系,用文字表示出来。

(2) 用含有字母的等式表示出这个关系。

(3) 在天平上表示出这个等式 。

小组合作探讨,汇报交流,得出 :人工养殖的只数x10=野生只数

10x=1600 ,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600

只 。我们通过分析它们之间的等量关系得出了等式10x=1600.

2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)20xx年只数×3+100=20xx年的只数。

(2) 3×+100=1000或1000-3×=100 (3)天平左盘3x和100,右盘1000.

我们通过分析它们之间的等量关系得出了等式3x+100=1000.

3、 揭示方程的意义

师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)

我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)

师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。

师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)

师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?

三、巩固练习,加强应用。

看来同学们已经掌握了今天所学的知识,下面老师来考考你。

课件出示课本自主练习1,2,3,4。

四、回顾反思,总结提升。

通过这节课的学习,你有什么收获?

方程的意义课件8篇


方程的意义课件(篇1)

【教学目标:】

1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

【教学重点:】方程的意义。

【教学难点:】正确区分等式和方程这组概念。

【教学实录:】

一、创设情景,感知等式

1、出示天平:

师:认识吗?它在生活中有什么用?(称物体的重量、使得左右平衡)

生:天平是用来称物体的重量的。

2、鸡蛋天平图

A、演示:平衡

在左放两个鸡蛋,右放上100克砝码,天平平衡。

师:天平这时怎么呢?说明了什么?

生:天平平衡了,说明这两个鸡蛋重100克。

师:你能用一个数学式子来表示吗?

生:50+50=100(板书:50+50=100或502=90)

师:谁来给这种式子起个名字吗?

生:可以叫等式。(板书:等式)

B、演示:天平不平衡

师:左边拿走一个鸡蛋,天平会怎样?说明了什么?

生:天平就不平衡了,说明左右两边不相等。

师:能不能也用一个数学式子表示呢

生:50100(板书)

师:这是等式吗?

生:不是等式。

【反思】学生先要观察天平的现象,再独立的思考该如何解答?这样的一个思考过程是十分必要的。因为,随后出现的式子70+X=9070+X9070+X90

等都是在此基础上建立来的。这样的教学设计,一方面是为了使知识之间的联系更紧密,以便于后续教学活动的进行;另一方面也可以借此来培养学生独立思考的能力。)

3、饮料,糖果天平图

A、演示:左边70克糖果,右边90克饮料,天平向右倾斜

师:天平怎么了?说明什么?

生:饮料比糖果重。

师:谁来用式子表示?

生:7090(板书)

B、如果在天平的左边加上x克的牙签。

师:这时天平可能会发生什么情况?

生一一说出3种情况

师:你能分别用数学的式子表示吗?

根据学生回答板书:70+X=9070+X9070+X90

师:这几个式子同上面的式子比,有什么不同?

生:它们含有未知数。

4、教材中的杯、水、砝码天平图。

A、演示:左边空杯,右边100克砝码,天平平衡。

师:通过你的观察,你知道了什么?

生:我知道了一个空杯的重量是100克。

B、师:往空杯中加入水,天平会怎样?

生:天平会向左倾斜。

师:有其他可能吗?

生:不会有其他可能。

师:可以用y表示倒入的水,还可以用其他字母表示吗?你能用一个式子表示这个现象吗?

生:可以用其他的字母。

生:100+y100(板书)

C、演示;往天平的右边加了100克和50克的砝码,天平再次平衡

师:能不能又用一个式子表示此时的现象呢?

生:100+y=250(板书)

师:到底倒入的水有多少克,你能知道吗?

生:水有150克,因为250-100=150克

二、主动探究方程的意义

1、分组尝试、引导分类

过渡:刚才我们通过观察、思考得出了这么多的式子,你能按照一定的标准将它们分分类吗?把你思考的在小组中交流,然后派代表全班交流。(教师指着黑板上的各种式子说)

50+50=100

50100

7090

70+X=90

100+y100

100+y=250

70+X90

70+X90

2、提供给学生观察的时间、尝试分类

3、反馈

(注意:让学生说说这样分的理由是什么?多指名几位学生说)

第一次分类:按照等式不等式分

第二次分类:按既含有字母有是等式分

A、让学生说自己是怎么分的?

B、如果学生按照多种标准分时,指出:分类一次时只能是一个标准。

C、引导学生分

师:那么按照是不是等式分应该怎么分?

D、第二次分类:

师:你能把这些等式再分分类吗?

4、概括概念

过渡:看来同学们都能按自己的标准对式子进行分类。

(老师把黑板上不是方程的式子擦掉)

A、教师指着黑板说:那么,像这样的等式我们叫做方程(注意语气语速)。

(板书:方程)

B、你能说说什么叫方程吗?

C、学生发言,概括出:含有字母的等式叫做方程(板书)

【反思】设计分类有两个目的:第一,通过学生找到一定的分类标准,自主对式子进行比较,辨别,明确什么是方程。第二,明确分的标准虽然不同,但通过连续两次分,最后的结果是一致的。在分类过程中,我的打算本是把学生的两种分法的结果一一抄写在黑板上,可由于黑板有些小,我就图简便,第一种分法我就在原算式上调整了位置,没重抄。当学生说到第二种分法的结果时,我们的原始算式没有了,给人一种将第一种分法的结果又再分的错觉,听课的老师有这种错觉,我想学生肯定有的没把两种分法弄清楚。

三、拓展练习、巩固概念

1、判断:下面的式子哪些是方程,哪些不是方程?(书上练习)

8x=06x+24+2>102y5=10n-5m=15

17-8=910<3m6x+3=11+2x4+3z=10

提问:在判断的过程中,你有哪些新的体会以下几点:

学生可能会说:

(未知数)也可以在等号的右边;

未知数可以用x、y等多个字母表示;

一个等式中可以含有多个未知数;

小结:看来我们要判断是否是方程,必须要具备什么条件。

师:认识了方程,以前见过吗?

师;其实一年级就见过。(生奇怪)比如8+□=10

学生恍然大悟,原来方程离我们并不遥远。

2、讨论、辨析概念

A、判断,下面的说法对吗?

所有的方程都是等式。

所有的等式都是方程。

B、你能用一个图(或表)来形象地反映出等式和方程的关系吗?

方程的意义课件(篇2)

我说课的题目是《方程的意义》,下面我和大家汇报一下我的设想。

我从教材、教学流程、教法学法、板书设计、学习评价这几个方面来谈一谈。

首先,说教材。本课的内容选自人教版小学数学五年级上册教材53-54页的《方程的意义》。课程标准把“式与方程”作为义务教育阶段培养学生的数感、符号意识、模型思想及发展学生的应用意识和创新意识,帮助学生理解表达具体情境中的数量关系的重要学习内容,《方程的意义》这部分内容的学习是在学生已初步学习了一些代数知识,如:用字母表示数,用字母表示运算定律和计算公式,用含有字母的式子表示数量关系等基础上进行教学的,这些都为本课的学习提供了知识铺垫。体现了从具体到抽象,由浅入深的设计思路。《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

根据对教材的初步分析与理解,结合五年级学生的认知规律,我将本课的教学目标定为使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系;使学生经历从生活情境到方程模型的构建过程,使学生在观察、描述、分类、抽象、交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感;让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系。

根据教学目标,我将本课的重点定为方程意义的理解以及在具体情境中建立方程的模型。

另外,根据学生已有知识经验,很容易将列方程时的数量关系与列算式时的思维过程混淆起来,所以我觉得本课的难点是了解等式与方程的关系。

在教学信息和感知材料的呈现上,我选用多媒体演示的方法,这样更直观、易懂。在教学前,我为学生准备了各种含有未知数和不含未知数的等式与不等式的贴纸。 结合五年级学生的认知水平和年龄特点,我将本课的教学设计为五个环节。

第一个环节:创设情境,生成问题

学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助天平首先让学生体会等式的含义。 活动:感知平衡,体会等式含义。(1分钟)

课件出示一架天平,在天平一边放上一个梨,另一边放上两个西红柿,展示梨比西红柿重,两边一样重,西红柿比梨重,三种情况。让学生说一说看到的情况,可以用什么符号表示。通过这个环节,使学生对天平感兴趣,进而也会对今天将要学习的知识产生更大的期待。

第二环节:探索交流,解决问题

下面这个环节是课堂教学的中心环节。新课程标准指出:学生学习内容的呈现应采用不同的呈现方式,以满足多样化的学习需求。同时有效的学习活动不能单纯的依赖模仿和记忆,自主探索与合作交流是学生学习数学的重要方式。基于这些认识这一环节我将分以下几个层次进行教学。 将时间控制在13分钟左右。 本环节我设计了以下几个教学活动。

活动一: 感知平衡,体会等式含义 6分钟

情景1:演示天平左边放一个50克的砝码,右边放一个20克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50>20)

情景2:演示天平左边放上一个50克的砝码和一个10克的砝码,右边放上三个20克的砝码,再次请学生用式子表示天平所处的状态。(板书:50+10=20x3)

根据情境1、2的展示方式,让学生继续看课件写出算式来。在这里将以上的板书都做成贴片形式,可随时移动位置,方便下一环节进行分类。板书所有式子如下:

50>20 50+10=20x3 X

通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的学习兴趣、培养了学生的观察能力和发现能力。 新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的。学生通过分类对比,形成表象,使学生亲历知识的生成过程。

活动二:引导分类 5分钟

在得出这么多的等式和算式后,我会说这些式子有些凌乱,同学们能不能掌握一个分类标准,小组合作,进行分类。 在这个问题上,我采取的是让学生先独立思考然后小组交流的形式进行,我根据学生思维特点采取由“ 扶 ”到“放”的策略,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。 交流汇报:(学生边说,教师边板书)

不等式 等式 方程 有未知数 无未知数

根据板书,我会提问:仔细观察一下,有没有相同的?

学生会回答有,然后学生边归纳我一边板书这些相同的式子,接着我会追问这些相同的式子又具有什么相同的特点呢?学生通过观察会回答它们都是等式,它们都含有未知数。我会对他们的回答进行表扬,并强调像这样含有未知数的等式就是方程,

方程是我们数学王国的新朋友。我们今天要学习的就是方程的意义。此时板书课题:方程的意义。

接着,我让学生说说黑板上有的式子为什么不是方程,帮助学生巩固刚刚学习的知识。进一步强调含有未知数和是等式这两个条件缺一不可。这样的设计我主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

第三环节:深入拓展,辨别概念 活动1:找方程(出示课件)

3 x 42=126 5X>10 6+X=14 X+470 8+X

6+X=14 3 x 42=126 36-7=29

10÷m=5

等式 方程方程的概念虽然概括出来了,但是理解消化它还需要继续学习。通过上面的分类讨论,学生初步了解了方程的意义,从这个意义中看出两个条件都是必要的,缺少任何一个都不是方程。所以在这一环节,我让学生找出课件中的等式与方程,并详细解释有的式子为什么不是等式,也不是方程。最后通过画图用2个集合圈来表示方程和等式关系,使学生对等式和方程有的关系有了更深的理解。达到这一步,才能算在学生的头脑中初步建立起了方程的概念。这个活动充分体现了学生的主体性,让学生在解决问题的过程中得到创造的乐趣。在寓教于乐中,学生享受着探索过程中的乐趣,也掌握了这个知识。 等式 方程

第四环节:巩固练习,灵活运用20分钟开始 通过生活化的情境,加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、不同难度的练习题。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。展示课件,我说生活中还有许许多多的实际问题可用方程表示其数量关系,请同学们根

据题目列出相应的方程来。

(1)马老师坐大客车前往重庆办事,客车准载45人,坐了x个座位,还有10个空座位。 10+X=45 45-X=10

(2)从石柱坐到重庆,总共240千米,马老师坐了4个小时,找出图中的相等数量关系。

4X=240 (3)

20-3X=2 (4)

38+b=86 86-b=38 86-38=b 此时,题目难度升级,题中数学信息增加,我首先请学生齐读题目,帮助学生理解题目。 (5)

我会鼓励学生说出自己的想法,找出等量关系,列出方程来。 1400+Y=2700

1400-Y=100 (2)

6X+48=96

通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第五环节:回顾整理,反思提升

小结新知,明确收获让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。

《新课标》中指出:重视学生已有经验,使学生体验从实际背景中抽象出数学问题,构建数学模型,寻找结果、解决问题。在本课教学中我主要采用探究性的学习方式,帮助学生建立表象,通过创设学生熟悉的生活情境,让学生在情境中,通过积极思考、自主探索、比较分析、合作交流等活动获取新知,培养孩子勤于动手动脑的能力;另一方面,为了充分发挥孩子的主体地位,我让学生经历独立思考、小组合作交流、展示等活动,引导学生掌握思考问题的方法。学生在学习了用字母表示数量关系以后通过一定的情景进一步学习方程的意义,列方程和用方程表示简单的数量关系。学生要在熟悉用含有字母的式子表示数量关系的基础上理解和掌握方程的意义。在天平的演示情景中观察,思考,说出等式的特点,并由分类等式、不等式,在等式中找出熟悉的等式和陌生的等式的相同点几不同点,使新旧知识衔接起来,从而推导方程的意义。之后通过合作、讨论、探究,理解方程和等式的关系,进一步理解方程的意义,在头脑中建立起“方程”的概念,并能扩展到根据方程的意义列出简单的方程和用方程表示简单数量关系。

最后,来和大家说一说本课所用的学习评价,在本节课的教学中,我采用师评、互评、自评相结合的评价方法,我重视对学生探究能力、归纳能力、应用能力、语言表达能力以及学习热情的评价,我想以此来发挥评价的激励作用。

我的说课到此结束,谢谢各位! 附:板书

方程的意义

不等式等式 方程 有未知数 无未知数

50>20 50+10=20x3

X

3a=4b

方程的意义课件(篇3)

课堂教学内容:教科书第1~2页的内容及练习一的1~3题。

课堂教学目标:1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

重点:理解等式的性质,理解方程的意义。

难点:理解方程的意义,弄清方程与等式的关系。

课前准备:光盘

教学过程:

一、教学例1

出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

含有等号的式子叫等式,它表示等号两边的结果是相等的。

二、教学例2

学生自学

要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识:

X+50>100X+50=100

X+50<100X+X=100

根据学生的回答,教师板书这4道算式。

3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,

要说出理由。

学生可能会这样分:

第一种:

X+50>100X+50=100

X+50<100X+X=100

第二种:

X+50>100X+X=100

X+50<100

X+50=100

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?含有未知数等式说明:未知数可以用X表示,也可以用别的符号表示。

那X+50>100、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程

小结:方程是一种特殊的等式。

如果用图来表示可以这样表示(用集合图表示)

二、巩固方程的意义

1、练一练第1题

(1)观察,找一找哪些是等式,哪些是方程?

(2)交流:这样找的理由是什么?

(3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

2、试一试

(1)观察左边的天平图,说说图中的是数量关系,列出方程。

(2)观察右边的图,弄清题意,列出方程。

3、练一练第3题

先列出方程,再比较哪个方程比较简单。

4、练一练第2题

先写一些方程再组织交流

三、课堂总结

四、巩固练习

1、练习一第1题先独立完成再交流

2、练习一第2题

(1)先说一说每题的数量关系

(2)独立列出方程

(3)交流

3、练习一第3题

(1)说一说天平两边有什么物体,这些物体的质量间有什么关系

(2)独立思考列出方程

(3)观察方程,初步感知等式的性质。

设计意图:

创设情境,自主体验

本课通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

(二)突出重点,自主探索

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过算式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

(三)使用交流,注重评价

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在师导,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。感受数学与生活之间的密切联系。

方程的意义课件(篇4)

教学目标:

1、借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

2、会用方程表示数量关系。

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

4、感受方程与现实生活的密切联系,体验数学活动的探索性。

教学过程:

一、课前探疑

学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

二、课始集疑

1、揭题

2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

三、课中释疑

一认识天平:课件出示天平,同学们说天平的作用、用法。

二认识等式

1、演示课件写出式子

在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?

你能用一个数学式子来表示这时候的现象吗?40+50<100

再在左边放一个30克的物体,这时天平怎么样?

你能也用一个式子来表示这时候的现象吗?40+50+30100

把左边的一个30克的物体换成10克的,这时天平怎么样

你能也用一个式子来表示这时候的现象吗?40+50+10=100

再把左边的10克与50克的物体换成未知的,这时天平怎么样

你能也用一个式子来表示这时候的现象吗?40+X100

再把左边的未知的物体换成另一个未知的,这时天平怎么样

你能也用一个式子来表示这时候的现象吗?40+X=100

再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样

你能也用一个式子来表示这时候的现象吗?X+X=150

2、分类

刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

展示同学们不同的分类,并说说你们是按照什么标准分的?

师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)

3、理解概念

师:为什么这么分?你们发现了这一类式子有什么特点?左右两边相等

揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)

谁来举一些例子说说什么是等式?

二认识方程

1、分类

谁能把这些等式再分成两类吗?根据什么标准分?

(板书:含有未知数)

像这样,含有未知数的等式我们把它叫做方程。

谁能举一些方程的例子?

这些式子为什么不是方程?

谁来说说什么是方程?

2、巩固概念

老师这儿也有几个式子,它们是方程吗?为什么

出示3+X=1017-8=96+2X

8X=07-X3ZY=2

通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用X表示。

(2)未知数不一定只有一个。

一个方程,必须具备哪些条件?

三比较辨析

师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?

谁能用自己的话说说方程与等式的关系?

你能用自己的方式来表示方等式和方程之间的关系吗?

例如画图或者别的方式,小组合作,试一试。

四认识方程的解与解方程

1、认识方程的解与解方程的概念

师:回忆一下,我们以前见过方程吗,在哪见过?你能求出第一个方程中未知数的值吗?

40+X=100

怎么证明你所求的未知数的值是正确的呢?

(把这个未知数的值代入方程中能使方程左右两边相等)

揭示:像X=60这样能使方程40+X=100左右两边相等的未知数的值叫做方程的解。

师:谁知道方程2X=150的解是多少?你如何证明?

通过刚才的学习,现在谁能说说方程的解可以是任意一个数吗?那它是怎样的数?

揭示方程的解的概念

刚才大家学习了什么是方程的解。谁来说说方程40+X=100的解是怎么求出来的?

揭示:大家求出方程的解的这个过程叫做解方程。

2、比较辨析方程的解与解方程的区别

学到这里,马老师想问大家一个问题:方程的解与解方程是一样的吗?谁能以方程2X=150为例,说说什么是方程的解,什么是解方程?

下面请小组讨论:方程的解与解方程的区别

3、巩固概念

X=8是下列哪个方程的解

X+12=2533-X=253X=212X+12=2842X=5

四、课末践疑

1、练习

看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?

(1)马老师暑假带爸爸、妈妈与女儿,四个人一同去青云山浏览,买了四张门票共花了100元钱,你能用方程来表示购买门票的有关数量关系吗?

师:这里还有一些有关我们学校的信息,谁来读一读。

(2)樟城小学是永泰县最大的小学之一。校园占地总面积8380平方米。三座教学楼占地总面积为1868平方米,平均每座教学楼占地面积为X平方米。校园其它设施占地面积为Y平方米。

你能选择其中一些信息列出方程来吗?

2、质疑:你还有什么想说的吗?

3、总结:学了这节课你有什么收获?

方程的意义课件(篇5)

《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。

根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:

1、了解方程的意义,弄清方程与等式的联系与区别。

2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。

下面我就将本节课的教学过程及设计意图向大家做以汇报。

一、谈话导入:

同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)

【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】

二、认识并使用天平

教师介绍天平:

这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。

教师示范:

下面我们就一起来进行实际应用天平来测量一下。

首先我们来应用一下,检查一下砝码的质量是否准确。

在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。

看到天平,你会用等式表示天平两边物体的质量关系吗?

20+30=50

这有一个空的水杯,我们先来测量一下它的重量。

请你估计一下它的重量。我们来试一试。

通过测量,我们得知,水杯的重量是100克。

现在我们缓缓向水杯里倒水,你发现天平怎么样了?

你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?

100+X>100

我们继续测量水的质量,同理得出:

100+X>200

100+X<300

100+X=250

这几个算式都以板书形式呈现。

【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】

三、认识方程

1、根据天平写算式并分类

刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。

【《20xx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

2、交流汇报:

学生边说,教师边板书:

等式 不等式

含有未知数 3x=180 50+2x>180

100+x=50x3 80<2x

不含未知数 50x2=100 100+20<100+30

根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?

【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】

四、应用概念

同学们,根据你对方程的理解,你能自己写出几个方程吗?

判断,他们写得都对吗?

黑板上刚才我们写得这些算式,有方程吗?

【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】

五、方程产生的文化背景

早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

六、拓展延伸

在拓展延伸中,我设计了这样几个题目:

1、 根据线段图写方程

2、 根据数量关系写方程

3、 判断是否是方程

4、 方程与等式的关系

七、作业:

利用课余小组时间用天平测量物体的重量。

再想,天平两边可以如何添加,能使天平继续保持平衡呢?

【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】

方程的意义课件(篇6)

课堂教学内容:苏教版义务教育课程标准实验教科书《数学》五年级下册第1、2页。

教学设计理念:

方程的意义是概念的教学,数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,并且通过自我理解、生成、连接,形成自己的知识系统。所以,对方程概念及其教学应从多个层面加以把握:形式层面,含有未知数的等式,这是一种静态的结论;发现层面,经历方程模式的生成过程,寻找相等关系并用方程来表示,这是一个动态的过程;直观层面,举出正例或反例;直觉层面,一种数学的意识、一种方程的感觉。这样才能形成一个有力的认知结构,其中包含知识结构、方法结构和经验结构。

教学目标:

1.经历方程模型的建构过程。

2.在自主探究的学习过程中,理解并掌握方程的意义,弄清方程与等式间的联系与区别。

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:在观察分类中建构起方程的意义。

教学难点:理解方程的意义,并正确进行判断。

教学准备:多媒体课件、式子卡片、学生书写的纸条等。

教学过程:

一、创设情境,抽象数学式子

1.感知平衡,认识天平

(1)游戏:手指顶直尺保持平衡。

(2)说说生活中类似的现象,如果两边相等可以用数学上哪个符号来表示

2.创设情境,抽象出式子

(1)只含有数的式子。

①看演示课件(平衡图),写出502=100和50+50=100。

②看演示课件(不平衡图),写出50<100。

③比较式子不同之处,得出等式概念并板书。

(2)含有未知数的式子。

①棉签重量不知引出未知数用字母表示。

②猜测:天平左盘是50克,右盘是100克,如果将棉签放入左盘会出现什么情况

②根据不同情况写出式子。

50+x=10050+x<10050+x>100

④课件呈现:四个月饼重400克的天平平衡画面,写出式子:4x=400。

⑤比较式子的不同之处,得山这4个式子都含有未知数,板书:含有未知数。

教学片断实录:

师:这儿有一包棉签,它的质量不知道,我们可以怎样表示

生1:用表示。

生2:用表示是可以的,不过我们以前学过,可以用字母来表示。

生3:对,可以用x克来表示。

师:就只能用x克表示吗

生:还可以用其他字母,比如用y等等。

师:这里我们就选择x克,如果我们这包棉签放入左盘,猜猜看,会出现什公情况

生1:可能会两边相等。

生2:也可能左边轻,右边重。

生3:也可能左边重,右边轻。

根据学生回答,课件演示3种情况的画面。

师:你会用不同的式子分别来表示吗

生:50+x=10050+x<10050+x>100

设计意图:数学问题生活化,让学生经历现实生活到数学的提炼过程。通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用这种生活原形帮助学生概括并理解方程的意义。这样的设计在发现层面上让学生经历从现实问题到方程概念建立的过程,体会方程是刻画现实世界的数学模型。

二、引导分类,概括方程概念

1.提出分类要求:根据某个标准,将写出的式子进行分类。

502=10050+50=10050<100

50+x=10050+x<10050+x>100

4x=400

2.小组讨论,进行分类。学生利用纸条上的算式,小组进行分类,教师巡视。

3.演示分类:学生根据不同标准演示不同分类方法,说出分类标准并描述每一类式子。

4.观察分类:虽然分类方法不同,但都能分出像这样一类:50+x=100,4x=400。

5.描述式子:50+x=100和4x=400这一组式子有什么共同的特征呢,你能描述一下吗

6.概括概念并完整板书:含有未知数的等式,叫方程。

7.揭示课题并板书:方程的意义。

设计意图:将知识教学延伸至数学能力培养、数学思想的渗透,并不是把知识的教学作为惟一的教学目标,而是以这一内容为切入点,适时培养学生的观察、抽象与概括能力,让学生对抽象出的各种数学式子进行分类和再分类,初步建立数学分类思想。

三、举例辨析,体会方程本质

1.举例并交流

(1)学生举例。试举23例,写在自己的本子上,可以模仿屏幕上的方程,最好能写出形式不一样的方程。

(2)小组内交流,看看是否写对。

(3)全班交流。

2.辨析

(1)取走黑板上不是方程的式子,并说明理由。

(2)讨论:方程必须同时具备哪些条件

(3)小结:现在我们更加深刻地认识到,一个方程必须要同时具备(含有未知数)和(等式)两个条件,缺一不可。

(4)练习:从式子中先选出等式;再找出方程。

(5)交流从练习巾获得的新的启示。

3.探究方程与等式的关系

(1)观察练习中等式与方程后面的符号,说说发现。

(2)小组讨论,把方程与等式的关系写在纸上或画在纸上。

(3)学生上前展示并说明。

(4)教师出示韦恩图,说明并总结。

(5)判断并举例说明:①方程一定是等式。②等式一定是方程。

4.课堂小结。

教学片断实录:

在等式后面画○,在方程后面画△。

(1)7-x>3(5)8y=0○△

(2)18z=2○△(6)6+2x

(3)17-8=9○(7)3x+2y=15○△

(4)4+3x=10○△(8)480=2x-60○△

学生先找等式,然后找方程,分别作出记号。

师:通过这几道题的学习,你对方程又有了哪些新的认识

生1:方程中的未知数不一定只用x表示,像第2题有z,第7题有y。

生2:从第7题中我还知道方程中的未知数不一定只有一个。

生3:方程中的未知数不一定在等号的左边,比如说第8题。

师:非常好,你们拥有数学的眼光,老师真为你们感到高兴,还有其他想法吗?

生1:其实找方程我可以更快,不需要逐条找,因为已经找出了等式,而方程必须是等式,所以只要在等式中去找就可以了。

生2:我发现三角形的前面都有圆圈。

生3:我还发现圆圈的后面有的有三角形,有的没有三角形。

师:老师就是用这些符号来暗示等式与方程之间的关系,你们能用明确的语言或图画来表示方程与等式有什么关系吗小组内讨论进行,把你们的想法写在纸上或画在纸上。

设计意图:把数学知识转化成数学问题,让学生用自己的方式创作图画来表示方程与等式的关系,这样让学生带着问题去探索与思考,去解决问题,并在解决问题的过程中得到创造的乐趣。教学中,适时组织小组学习,不仅分解了教学的难点,更重要的是给学生提供了交流的机会与空间,让学生的思维撞击出智慧的火花,增强了学生的合作意识。充分发挥练习的作用,鼓励学生去思考与发现,不仅让练习起到巩固新知的作用,而且使练习成为生长点,产生新的想法和认识。

四、方程史话

《九章算术》是我国著名的数学著作,在收有的246个数学问题中,方程术是最高的数学成就。它提出了方程的概念,也系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。

五、联系实际,应用与拓展

1.看图列方程

(1)直接呈现未知数。

根据天平平衡列出方程。

根据生活场景列出方程。

(2)不呈现未知数。

2.数学套餐

自选数据和符号,组成方程。

3x202y60

+-=<>

教学片断实录:

师:你们组成的这么多的方程中为何>、<没用到,而每次=都用到呢

生:因为方程必须是等式,所以每次都用到等于号。

师:那又为何每道方程中3x和2y至少用到一个呢

生:因为方程中必须合有未知数。

师:当然,根据这些数据与符号,还可以组成更多的方程,课后大家可以再试试。

设计意图:让学生充分感受生活中的数学和数学中的生活;在看图列方程的练习中,呈现隐含未知数的画面。以此渗透了将未知量设成未知数,为学习列方程解应用题作铺垫;数学套餐在直觉层面上继续培养学生一种数学的意识,一种方程的感觉,通过组成方程和回答问题进一步突出方程所具备的条件。

方程的意义课件(篇7)

教学内容:

苏教版教科书第1~2页的内容。

教学目的:

⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。

⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象能力和符号感。

⑶学生在数学活动的过程中,养成独立思考、主动与他人合作交流等习惯,获得成功的体验,培养对数学的学习兴趣。

教学流程:

一、情景引入,初步展开新课。

⑴出示“天平”情景图,了解学情。

让学生说说,你知道了什么?

天平;两边是一样重的;指针在中间表示就表示相等等等。

⑵用等式表示天平两边物体的质量关系。

先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。

二、继续出示情景图,深入展开新课。

⑴出示情景图,明确要求。

用式子表示天平两边物体的质量关系。

⑵独立思考,试写式子。

学生在书上独立填写。

⑶学情反馈,班级交流。

让学生自行上黑板写不同的式子。

可能会出现下面这些式子:x+50>100,x+50≠100, x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等。

甄别确认正确答案。

⑷尝试分类,理解方程的意义。

明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200 ,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。

再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。

⑸体会等式和方程的关系。

用符号表示等式和方程的关系,例如集合图等;用形象的情景表示等式和方程的关系,例如部分和总数等。

三、独立练习,进一步内化新知。

⑴完成练一练1。

确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和方法;交流矫正。

⑵下面哪些是等式,哪些是方程?用线连一连。

9—x=3 20+30=50

80÷4=20 等式 x+17=38

x—15 方程 36+ x<40

7y=63 54÷x=9

⑶完成第2页试一试和看图列方程。

先独立列方程,再在小组里交流列式的思考。

⑷完成练习一1~3。

重点交流第2题。

方程的意义课件(篇8)

教学内容: 数学书P53-54及做一做,练习十一1-3题。

教学目标:

1、初步理解方程的意义,会判断一个式子是否是方程。

2、会按要求用方程表示出数量关系。

3、培养学生观察、比较、分析概括的能力。

教学重难点:会用方程的意义去判断一个式子是否是方程。

教具准备:天平、空水杯、水(可根据实际变换为其它实物)

教学过程:

一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x300.

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

1、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

1、反馈练习。

完成做一做,在是方程的式子后面打上。 对于不是方程的几个式子要说明其理由。

2、小结:这节课学习了什么?怎么判断一个式子是不是方程?

提问:方程是不是等式?等式一定是方程吗?

看课外阅读,了解有关方程产生的数学史。

四:练习

1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

五、作业:练习十一第1题。

方程的意义课件集锦13篇


做好教案课件是老师上好课的前提,因此在写的时候就不要草草了事了。教案的编写需要注重学生问题解决能力的培养和提升。这里有关于“方程的意义课件”的多个实用案例资料趣祝福的编辑为你整理,我们致力于提供高质量的资讯和经验欢迎大家阅读和借鉴这篇文章!

方程的意义课件 篇1

教学内容:教科书第1~2页的内容及练习一的1~3题。

教学目标:1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

教学过程:

一、教学例1

出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

含有等号的式子叫等式,它表示等号两边的结果是相等的。

二、教学例2

学生自学

要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识:

X+50>100X+50=100

X+50<100X+X=100

根据学生的回答,教师板书这4道算式。

3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,

要说出理由。

学生可能会这样分:

第一种:

X+50>100X+50=100

X+50<100X+X=100

第二种:

X+50>100X+X=100

X+50<100

X+50=100

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?含有未知数等式

那X+50>100、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程。

三、完成试一试、练一练

学生独立完成。

集体订正时围绕含有未知数的等式进一步理解方程的含义

四、课堂作业:练习一的1、2、3。

板书:

X+50=100

X+X=100

像X+50=150、2X=200这样含有未知数的等式是方程。

方程的意义课件 篇2

教学内容:教科书第1~2页的内容及练习一的1~3题。

教学目标:1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、经历从生活情景到方程模型的建构过程。

3、培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:使学生理解方程的含义,感受方程思想

教学难点:使学生理解方程的含义,感受方程思想

课前准备:天平、砝码

教学过程:

一、创设情景,抽象数学模式。

1.出示实物天平。

师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

2.演示:

出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)

师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢(演示)

学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

提出要求:你能用等式表示天平两边物体的质量关系吗?

学生在本子上写。

指名回答,板书:50+50=100

3、出示例1

说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

(板书:含有等号的式子叫等式)

二、引导分类,概括方程概念。

1、学生自学

要求:

(1)学生在书上独立填写,用式子表示天平两边的质量关系。

(2)小组同学交流四道算式,最后达成统一认识:

X+50>100X+50=100

X+50<100X+X=100

根据学生的回答,教师板书这4道算式。

(3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

A、想一想你分类的标准是什么?

B、把自己分类的情况,写在纸上?

学生可能会这样分:

第一种:

X+50>100X+50=100

X+50<100X+X=100

第二种:

X+50>100X+X=100

X+50<100

X+50=100

2、概括概念

过渡:看来同学们都能按自己的标准对式子进行分类。

引导学生理解第一种分法:

你为什么这样分,说说你的想法。

A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)

B、你能说说什么叫方程吗?

C、学生发言,概括出:含有未知数的等式叫做方程(板书)

提问:你觉得这句话里哪两个词比较重要?含有未知数等式

那X+50>100、X+50<100为什么不是方程呢?

提问:那等式和方程有什么关系呢,在小组里交流。

方程一定是等式,但等式不一定是方程。

3、举例方程、理解概念

你能例举出方程吗?谁能举的与刚才不一样吗?(用字母Y表示、有难度的方程)

以前我们见过方程吗?

三、完成试一试、练一练

1、试一试

(1)观察左边的天平图,说说图中的是数量关系,列出方程。

(2)观察右边的图,弄清题意,列出方程。

1、练一练第1题

(1)观察,找一找哪些是等式,哪些是方程?

(2)交流:

(3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

(4)判断:方程是含有未知数X的等式。..()

2、练一练第2题

(1)先写一些方程

(2)组织交流

3、练一练第3题

四、课堂作业:

1、练习一第1题先独立完成在交流

2、练习一第2题

(1)先说一说每题的数量关系

(2)独立列出方程

(3)交流

3、练习一第3题

(1)说一说天平两边有什么物体,这些物体的质量间有什么关系

(2)独立思考列出方程

(3)观察方程,初步感知等式的性质。

习题超市:

1、讨论判断:下面的式子哪些是方程,哪些不是方程?

8x=06x+24+2>102y5=10n-5m=15

17-8=910<3m6x+3=11+2x4+3z=10a8=60

2、根据下面的信息,你能列处几个不同的方程?

我比莉莉重25kg,,我重61kg。

我186cm。

我身高xcm,我比爸爸矮40cm。

我重ykg。

板书设计及课后反思:

方程的意义

含有等号的式子叫等式

X+50=100

X+X=100像X+50=150、2X=200这样含有未知数的等式是方程。

教材简析:

等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现=,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了质量这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的安排有三个特点:

第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择=>或<时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

第2页的试一试和练一练第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.84=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

方程的意义课件 篇3

课前准备:利用学具(简易天平)感受天平平衡的原理.

教学过程

学生活动

设计意图

一,创设情景,建立表象

1.认识天平.

2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

(天平两边所放物体质量相等)

3.用式子表示所观察到的情景:

情景一:导入等式

(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

300+150=450

(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

250+250+250+250=1000

或250×4=1000

情景二:从不平衡到平衡引出不等式与含有未知数的等式

(1)

在杯子里面加入一些水,天平会有什么变化

要使天平平衡,可以怎么做

情景三:看图列等式

(1)

x+y=250

(2)

536+a=600

直观认识天平

回忆课前操作实况理解平衡原理

观察情景图,先用语言描述天平所处的状态,再用式子表示

先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解

观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.

通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).

方程的意义课件 篇4

教学目标:

1、经历从生活情境到方程模型的建构过程。

2、理解方程概念,感受方程思想。

3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

教学过程:

一、情境创设,初建相等关系模型。

1、师出示天平图,

2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

图3为什么能称出两只苹果的质量?

你能用一个式子表示出天平两边物体的质量关系么?

图1和图2为什么不能称出两只苹果的质量呢?

你也能用一个式子表示出天平两边物体的质量关系吗?

3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

你的小脑袋里有等式吗?说一个试试。

除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

二、借助基础,拓展等式外延。

1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

这些含有未知数的等式你见过吗?

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

五、实践应用,拓展外延。

1、你能看图列出方程吗?

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

个别交流的基础上同桌互说。

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

方程的意义课件 篇5

教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

教学目标:

1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

2、培养学生认真的观察、思考分析问题的能力。

3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

教学重点:理解和掌握方程的意义。

教学难点:弄清方程和等式的异同。

教学过程:

一、 创设情境,生成问题

(1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

(2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。

师;怎样才能使天平左右两边相等?

出示一架天平的左边是有物体20克和30克,右边是50克

师:用算式怎么表示?

生:20+30=50

引导总结得出这个一个等式。

二、探索交流,解决问题再出示天平左边是20克的物体和?克的物体,右边是100克的物体,教案《方程的意义教学设计》。

师:“?”表示什么?我们可以用什么表示?

生:用字母表示。

生1:20+x=100

生2:100-x=20

生3:100-20=x

师:你认为用哪个式子更能表示天平的作用两边是平衡的?

引导得出:20+x=100 表示天平左右两边是平衡的.

出示6架天平,根据天平的平衡状态写算式。

把这8个算式标号,得练习:

①20+30=50 ⑤ 80

②20+χ=100 ⑥ 3χ=180

③50×2=100 ⑦100+20

④50+2χ> 180 ⑧100+2χ=3×50

思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

同桌合作交流汇报

等式 不等式

①20+30=50 ④50+2χ> 180

②20+χ=100 ⑤ 80

③50×2=100 ⑦100+20

⑥ 3χ=180

⑧100+2χ=3×50

含有未知数的式子 不含未知数的式子

②20+χ=100 ①20+30=50

④50+2χ> 180 ③50×2=100

⑤ 80

⑥ 3χ=180

⑧100+2χ=3×50

师:既是等式,又含有未知数的的式子有哪几个?

生:②20+χ=100

⑥ 3χ=180

⑧100+2χ=3×50

像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

三、巩固应用,内化提高

练习:下面哪些是方程?哪些不是方程?

① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

② Y+24 ( ) ⑦ 35+65=100 ( )

③ 5 χ+32=47 ( ) ⑧χ-14> 72 ( )

④ 28< 16+14( ) ⑨9b-3=60 ( )

⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

(1) 6X + ( =78

(2) 36 + ( ) =42

四、回顾整理,反思提升 通过这一节课的学习,你有哪些收获?

方程的意义课件 篇6

教学目标:

知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

1.平衡现象数量关系的抽象概括。

师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?

师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。)

师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?

师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?

师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻

这边加150克砝码,观察天平平衡了吗?

师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)

师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?

师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)

师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?

师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)

1.观察分类。

师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)

2.展示分类。

①交流分类情况,说明分类理由。

师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)

师:请同学们仔细观察这些等式,它们有什么不同?

师:这些等式中的字母表示“未知数”,像这些“X+100=

含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)

1.判断下列式子是不是方程。

2.创作方程。

3.问题质疑,揭示方程与等式的关系。

①含有未知数的式子是方程?

②“方程一定是等式,等也一定是方程?

(五),巩固练习。

师:说说你这节课有什么收获,你还想学习有关方程的什么内容。

方程的意义课件 篇7

教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。

学生在本子上写。

含有等号的式子叫等式,它表示等号两边的结果是相等的。

要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识:

根据学生的回答,教师板书这4道算式。

内交流,要说出理由。

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

那X+50>100 、X+50<100为什么不是方程呢?

方程一定是等式,但等式不一定是方程。

三、完成“试一试”、“练一练”

像X+50=150、2X=200这样含有未知数的等式是方程。

方程的意义课件 篇8

教学内容:

教材P62~63及练习十四第1、2、3题。

教学目标:

知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。

过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

教学重点:

理解和掌握方程的意义。

教学难点:

弄清方程和等式的异同。

教学方法:

观察、分析、分类、抽象、概括和交流

教学准备:

多媒体,天平。

教学过程

一、情境导入

1.创设情境:同学们,你们听过《曹冲称象》的故事吗?

教师简单介绍《曹冲称象的故事》

2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

(让大象和石头的重量相等,再称石头的重量。)

3.是的。那么你们知道吗,在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

二、互动新授

1.出示天平:

让学生说一说对天平有哪些了解?

让学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。

教师做补充:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

2.合作探究。

(1)在天平的右边放一个1009的砝码,怎样才能让天平平衡呢?

让学生自主思考、交流操作,得出:在天平的左边放2个509的砝码就可以保持平衡。

用算式表示:50+50=100。

让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

引导学生通过观察发现:现在天平平衡,说明空杯子重100g。

质疑:如果我往杯子里倒些水,观察天平现在的情况。

(在空杯里加一杯水后天平不平衡了。)

一杯水的重量是多少,怎样表示?

引导学生思考:你们知道一杯水有多重吗?(不知道)

如果要你现在表示这杯水有多重,你有办法吗?

学生思考,小组讨论得出:一杯水的重量一水的重量十杯子的重量。

追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

学生汇报:lOO+x(师板书)

(3)再次让学生观察现在的天平(天平右边放10g砝码),发现了什么?

(天平两边不平衡)

哪边重一些呢?你们能用数学算式来表示吗?

学生回答:lOO+x>100。

怎样让天平两边平衡呢?(加砝码)

教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况。

学生分组讨论,教师巡视指导

汇报时引导学生用式子表示:lOO+x>200lOO+x

并引导学生说明这杯水的重量大于200g,小于300g。

让学生继续操作,怎样才能使天平平衡呢?

引导学生把右边的砝码换成2509,使天平左右两边平衡。这说明了什么?

(一杯水的重量等于250g)

(4)你们能用数学算式来表示这天平的状况吗?

学生自主思考,再全班交流汇报:lOO+x=250(师板书)

引导学生观察比较这三个算式有什么不同?

lOO+x200lOO+x300lOO+x=250

小结:前面两个算式两边不相等,后面一个算式两边是相等的。

师引导:像这样两边相等的算式我们把它叫做等式。(板书:等式)

(5)让学生比较50+50=100与lOO+x=250两个等式,有什么不同?

学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

教师小结:像lOO+x=250这样的含有未知数的等式,称为方程。(板书:方程)

(6)引导学生思考:是不是所有的等式都是方程?(不是。)

那么,方程有哪些特点?

归纳小结:方程的特点:是一个等式,且含有未知数。

三、巩固拓展

1.让学生仿照课本情境图,自己试着写一些方程。

注意指导学生:方程一定是等式,并含有未知数。

2.完成教材第63页做一做第1题。

先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

3.完成教材第63页做一做第2题。先说一说图意,再写方程表示数量关系。

如:第一幅图天平的左边有两个重量是xg的球,右边是一个重50g的砝码,也就是两个xg的球的重量是50g,列方法表示为2x=50。第二幅图是一条线段分成了两部分,一部分是x,一部分是73,这两部分总数是166,即x+73=166.

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:1.像lOO+x=250这样含有未知数的等式叫做方程。

2.方程有两个重要条件:一个是等式,一个是含有未知数。

3.方程一定是等式,等式不一定全都是方程。

作业:教材第66页练习十四第1、2、3题。

板书设计:

方程的意义

不平衡平衡

lOO+x200lOO+x=250

lOO+x300

像lOO+x=250这样的含有未知数的等式叫做方程。

教学反思:本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我们还要注意将等式和方程进行直接对比。以使学生理解和区分等式和方程。口算题引入铺垫后,要再回过头来充分利用。在讲完等式和方程后再回到口算题上,将口算题通过变化由等式到既是等式又是方程,这样进行对比使学生弄明白等式和方程的关系。

方程的意义课件 篇9

2、培养学生认真的观察、思考分析问题的能力。

3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

(1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

(2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的.平衡这一特点。

师;怎样才能使天平左右两边相等?

再出示天平左边是20克的物体和?克的物体,右边是100克的物体。

师:你认为用哪个式子更能表示天平的作用两边是平衡的?

引导得出:20+x=100 表示天平左右两边是平衡的.

出示6架天平,根据天平的平衡状态写算式。

把这8个算式标号,得练习:

思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

四、回顾整理,反思提升通过这一节课的学习,你有哪些收获?

方程的意义课件 篇10

教学目标:

(1)使学生理解方程概念,感受方程思想。

(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

教学过程:

一、创设情景,抽象数学模式。

1.出示实物天平。

(实物天平比较小,用屏幕上的天平来模拟实验。)

2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢

(说明两边的重量可能有三种不同的关系。)

用式子描述重量之间的相等关系。

3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

用式子表示两队比分的关系。

红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了分,请你猜一猜,两队的情况会怎样呢?

用式子来表示比分的三种关系。

4.创设四个情景。

(1)每个情景中数量之间有什么关系?

(2)你能用关系式清晰地来描述吗?

二、引导分类,概括方程概念。

刚才我们对情景的描述得到了很多式子。

200+200=400182318+2318+2318+=23

280100120425+=7022y+720=1050

1.学生尝试第一次分类。

可能有几种不同的分法。

(1)看是否是等式。

(2)看是否含有未知数。

2.学生尝试第二次分类。

得到四组不同的式子。

3.描述每一组的特征。

4.引导概括方程概念。

含有未知数的等式叫方程。

三、抓等量关系,体会方程本质。

1.演示动态平衡。有等量关系,能用方程表示

2.出示情景(没有等量关系,不能用方程表示。)

出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

3.通过今天这节课,你学到了什么呢?

四、联系实际,应用与拓展。

1.周老师从无锡到徐州来上课。

(1)线段图。

(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。

2.情景图。

本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。

3.开放题。

小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)

方程的意义教学设计的说明

在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

整体的把握:

数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

形式层面含有未知数的等式(是关系的一种)。这是一种静态的结论。

发现层面经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

直观具体层面举出正例或反例。

直觉层面一种数学的意识、一种方程的感觉。

这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)

目标的把握:

经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

过程的把握:

统揽全局基础上的局部聚集,突出知识胚胎的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出知识胚胎的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太散的问题。

经历问题情景数学模型解释与应用的全过程。从问题情景数学模型展开数学化和结构化的过程。再从数学模型解释与应用展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

参考文献:

(1)史宁中、孔凡哲著.方程思想及其课程教学设计数学教育热点问题系列访谈录之一.《课程.教材.教法》第24卷第9期,

(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。

(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

方程的意义课件 篇11

教学内容:人教版实验教科书5354页

教具学具准备:课件

教法:引导法

学法:讨论、合作、观察、探究。

教学过程:

一、创设情景引入

师:你们玩过跷跷板吗?下面老师给你们讲一个跷跷板的故事。两只小青蛙在玩翘翘板很开心,一只小熊也要玩,同学们,你们说会怎么样?(没法玩)为什么?有什么办法也让小熊也能玩的开心呢?(让学生思考讨论)学生回答后师总结出要让跷跷板两边平衡。

同学们,你们知道吗在数学里也有这样的跷跷板,今天我们就来研究我们数学里的跷跷板。引出课题并板书。

二、探究新知

出示主题图(1)

请学生说说在这副图里你获得了那些信息?(天平两边平衡,一个空杯重100克。)

出示主题图(2)

请学生说说在这副图里你获得了那些信息?(在空杯里加一杯水后天平不平衡了。)

问:你们知道一杯水有多重吗?(不知道)

如果要你现在表示这杯水有多重,你有办法吗?

(学生思考,可以讨论)

用未知数x来表示水的重量,那么杯子和水一共有多重又该怎样表示呢?(指名回答)

100+x

出示主题图(3)

请学生观察这副图里的两架天平,发现了什么?(不平衡)

哪边重一些呢?你们能用数学算式来表示这两架天平的状况吗?

(学生分组讨论,教师巡视指导)

学生汇报:用>、<符号来表示哪一边重。(学生回答后,师板书)

100+x>200100+x<300

出示主题图(4)

请学生观察这副图里的天平,发现了什么?(平衡了)

你们能用数学算式来表示这天平的状况吗?(学生思考后教师指名回答)

100+x=250(师板书)

观察比较:

100+x>200

100+x<300

100+x=250

同学们,我们刚才写的这三个数学算式有什么不同?

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

师:你们能写出等式吗?(学生自由的写)

把学生写的等式有选择的用实物展示器展示出来。

如:3+8=11100-90=10

3+x=2560-x=7

10x=80070x=7等等

请学生把这里的等式分类

(学生小组合作分类)

学生汇报后让学生说出分类的理由。(有的含有未知数x,有的没有未知数x)

教师总结:像100+x=250这样的含有未知数的等式,称为方程。(板书)

(学生写一些方程)教师把学生写的在实物展示器展示出来。

三、实践应用

1、观察分类

①30+20=50②2x+50100

③802x④3x=180⑤x11=5⑥100+2x=503

⑦x-18=24⑧6020=3

⑨100+20xx0+50

2、下面式子哪些是方程,哪些不是方程?

6+x=14

3+x

502=25

6+x23

51a=17

x+y=18

3、判断

1)等式都是方程。()

2)方程都是等式。()

3)3x=0也是方程。()

4)含有未知数的式子叫方程。()

5)方程是等式,所以等式也叫方程。()

四、小结

同学们,今天你们有知道了什么知识呢?

五、板书设计

方程的意义

不平衡平衡

100+x>200

100+x<300100+x=250

像100+x=250这样的含有未知数的等式,称为方程。

教学目标

1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系,使学生初步理解等式的基本性质。

2.能力目标:培养学生认真观察、思考分析问题的能力。发展学生思维的灵活性。

3.情感态度与价值观:加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

教学重点

使学生初步理解等式的基本性质,理解与掌握方程的意义。

教学难点

帮助学生建立方程的概念,并会应用。

方程的意义课件 篇12

教材分析

本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。

1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。

2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。

3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。

学情分析

本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。

教学目标

1.能利用天平,通过动手操作理解等式的意义。

2.结合具体实例和情景,初步理解方程的意义,会用方程表

达简单的等量关系。

3.培养保护动物的意识,感受数学与生活的密切联系,提高

学习数学的兴趣。

教学重点和难点

重点:方程意义的理解 难点:建立等式、方程的概念

教学过程

方程的意义课件 篇13

我说课的题目是《方程的意义》,下面我和大家汇报一下我的设想。

我从教材、教学流程、教法学法、板书设计、学习评价这几个方面来谈一谈。

首先,说教材。本课的内容选自人教版小学数学五年级上册教材53-54页的《方程的意义》。课程标准把“式与方程”作为义务教育阶段培养学生的数感、符号意识、模型思想及发展学生的应用意识和创新意识,帮助学生理解表达具体情境中的数量关系的重要学习内容,《方程的意义》这部分内容的学习是在学生已初步学习了一些代数知识,如:用字母表示数,用字母表示运算定律和计算公式,用含有字母的式子表示数量关系等基础上进行教学的,这些都为本课的学习提供了知识铺垫。体现了从具体到抽象,由浅入深的设计思路。《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

根据对教材的初步分析与理解,结合五年级学生的认知规律,我将本课的教学目标定为使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系;使学生经历从生活情境到方程模型的构建过程,使学生在观察、描述、分类、抽象、交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感;让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系。

根据教学目标,我将本课的重点定为方程意义的理解以及在具体情境中建立方程的模型。

另外,根据学生已有知识经验,很容易将列方程时的数量关系与列算式时的思维过程混淆起来,所以我觉得本课的难点是了解等式与方程的关系。

在教学信息和感知材料的呈现上,我选用多媒体演示的方法,这样更直观、易懂。在教学前,我为学生准备了各种含有未知数和不含未知数的等式与不等式的贴纸。 结合五年级学生的认知水平和年龄特点,我将本课的教学设计为五个环节。

第一个环节:创设情境,生成问题

学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助天平首先让学生体会等式的含义。 活动:感知平衡,体会等式含义。(1分钟)

课件出示一架天平,在天平一边放上一个梨,另一边放上两个西红柿,展示梨比西红柿重,两边一样重,西红柿比梨重,三种情况。让学生说一说看到的情况,可以用什么符号表示。通过这个环节,使学生对天平感兴趣,进而也会对今天将要学习的知识产生更大的期待。

第二环节:探索交流,解决问题

下面这个环节是课堂教学的中心环节。新课程标准指出:学生学习内容的呈现应采用不同的呈现方式,以满足多样化的学习需求。同时有效的学习活动不能单纯的依赖模仿和记忆,自主探索与合作交流是学生学习数学的重要方式。基于这些认识这一环节我将分以下几个层次进行教学。 将时间控制在13分钟左右。 本环节我设计了以下几个教学活动。

活动一: 感知平衡,体会等式含义 6分钟

情景1:演示天平左边放一个50克的砝码,右边放一个20克的砝码,请学生观察后说一说发现了什么,用一个式子表示天平现在所处的状态。(板书:50>20)

情景2:演示天平左边放上一个50克的砝码和一个10克的砝码,右边放上三个20克的砝码,再次请学生用式子表示天平所处的状态。(板书:50+10=20x3)

根据情境1、2的展示方式,让学生继续看课件写出算式来。在这里将以上的板书都做成贴片形式,可随时移动位置,方便下一环节进行分类。板书所有式子如下:

50>20 50+10=20x3 X

通过天平称重的演示,让学生观察平衡与不平衡的各种生活现象,用生活原型帮助学生理解方程的意义,这样的设计激发了学生的学习兴趣、培养了学生的观察能力和发现能力。 新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的。学生通过分类对比,形成表象,使学生亲历知识的生成过程。

活动二:引导分类 5分钟

在得出这么多的等式和算式后,我会说这些式子有些凌乱,同学们能不能掌握一个分类标准,小组合作,进行分类。 在这个问题上,我采取的是让学生先独立思考然后小组交流的形式进行,我根据学生思维特点采取由“ 扶 ”到“放”的策略,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。 交流汇报:(学生边说,教师边板书)

不等式 等式 方程 有未知数 无未知数

根据板书,我会提问:仔细观察一下,有没有相同的?

学生会回答有,然后学生边归纳我一边板书这些相同的式子,接着我会追问这些相同的式子又具有什么相同的特点呢?学生通过观察会回答它们都是等式,它们都含有未知数。我会对他们的回答进行表扬,并强调像这样含有未知数的等式就是方程,

方程是我们数学王国的新朋友。我们今天要学习的就是方程的意义。此时板书课题:方程的意义。

接着,我让学生说说黑板上有的式子为什么不是方程,帮助学生巩固刚刚学习的知识。进一步强调含有未知数和是等式这两个条件缺一不可。这样的设计我主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

第三环节:深入拓展,辨别概念 活动1:找方程(出示课件)

3 x 42=126 5X>10 6+X=14 X+470 8+X

6+X=14 3 x 42=126 36-7=29

10÷m=5

等式 方程方程的概念虽然概括出来了,但是理解消化它还需要继续学习。通过上面的分类讨论,学生初步了解了方程的意义,从这个意义中看出两个条件都是必要的,缺少任何一个都不是方程。所以在这一环节,我让学生找出课件中的等式与方程,并详细解释有的式子为什么不是等式,也不是方程。最后通过画图用2个集合圈来表示方程和等式关系,使学生对等式和方程有的关系有了更深的理解。达到这一步,才能算在学生的头脑中初步建立起了方程的概念。这个活动充分体现了学生的主体性,让学生在解决问题的过程中得到创造的乐趣。在寓教于乐中,学生享受着探索过程中的乐趣,也掌握了这个知识。 等式 方程

第四环节:巩固练习,灵活运用20分钟开始 通过生活化的情境,加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、不同难度的练习题。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。展示课件,我说生活中还有许许多多的实际问题可用方程表示其数量关系,请同学们根

据题目列出相应的方程来。

(1)马老师坐大客车前往重庆办事,客车准载45人,坐了x个座位,还有10个空座位。 10+X=45 45-X=10

(2)从石柱坐到重庆,总共240千米,马老师坐了4个小时,找出图中的相等数量关系。

4X=240 (3)

20-3X=2 (4)

38+b=86 86-b=38 86-38=b 此时,题目难度升级,题中数学信息增加,我首先请学生齐读题目,帮助学生理解题目。 (5)

我会鼓励学生说出自己的想法,找出等量关系,列出方程来。 1400+Y=2700

1400-Y=100 (2)

6X+48=96

通过层层递进的练习,加深理解消化所学的知识,并应用所学知识灵活解决实际问题。进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第五环节:回顾整理,反思提升

小结新知,明确收获让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。通过交流学习所得,增强学生学习数学知识的信心,培养学生敢于质疑、勇于创新的精神。

《新课标》中指出:重视学生已有经验,使学生体验从实际背景中抽象出数学问题,构建数学模型,寻找结果、解决问题。在本课教学中我主要采用探究性的学习方式,帮助学生建立表象,通过创设学生熟悉的生活情境,让学生在情境中,通过积极思考、自主探索、比较分析、合作交流等活动获取新知,培养孩子勤于动手动脑的能力;另一方面,为了充分发挥孩子的主体地位,我让学生经历独立思考、小组合作交流、展示等活动,引导学生掌握思考问题的方法。学生在学习了用字母表示数量关系以后通过一定的情景进一步学习方程的意义,列方程和用方程表示简单的数量关系。学生要在熟悉用含有字母的式子表示数量关系的基础上理解和掌握方程的意义。在天平的演示情景中观察,思考,说出等式的特点,并由分类等式、不等式,在等式中找出熟悉的等式和陌生的等式的相同点几不同点,使新旧知识衔接起来,从而推导方程的意义。之后通过合作、讨论、探究,理解方程和等式的关系,进一步理解方程的意义,在头脑中建立起“方程”的概念,并能扩展到根据方程的意义列出简单的方程和用方程表示简单数量关系。

最后,来和大家说一说本课所用的学习评价,在本节课的教学中,我采用师评、互评、自评相结合的评价方法,我重视对学生探究能力、归纳能力、应用能力、语言表达能力以及学习热情的评价,我想以此来发挥评价的激励作用。

我的说课到此结束,谢谢各位! 附:板书

方程的意义

不等式等式 方程 有未知数 无未知数

50>20 50+10=20x3

X

3a=4b

本文的网址是//m.zfw152.com/a/5731520.html

相关推荐
最新更新
感恩回馈的句子200句

感恩回馈句子 12-23

烫头发的文案26条

头发心情文案 头发好心情文案 12-23

竞选大队干部演讲稿五篇

竞选大队干部演讲稿 竞选干部演讲稿 12-23

方程的意义和解简易方程

04-12

老人过世后悼念的句子71句

老人过世悼念句子 过世悼念句子 12-23

腊八节的文案怎么写收藏

腊八节文案 12-23

述职报告会计

述职报告会 12-23

雪景怎么配文案(66句)

雪景的配文 汉服雪景配文 12-23

财务人员工作总结(汇总6篇)

财务人员工作总结 12-23

爱心助学发言稿合集

爱心助学发言稿 助学发言稿 12-23

方程的意义的教案

04-12

推荐访问

全部分类