趣祝福范文大全(编辑 快乐小精灵)光阴如水,我们的教学工作又将翻开新的一页,现在的你想必不是在做教学计划,就是在准备做教学计划吧。但是教学计划要写什么内容才能让人眼前一亮呢?以下是小编为大家整理的2025年高一数学教学计划(精选9篇),欢迎大家借鉴与参考,希望对大家有所帮助。
2024必修一数学优秀教案 篇1
教材分析
函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。
学情分析
学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的`教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。
教学建议
以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。
教学目标
知识与技能
(1)能理解函数单调性、最值、奇偶性的图形特征
(2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性
(3)单调性与奇偶性的综合题
(4)培养学生观察、归纳、推理的抽象思维能力
过程与方法
(1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念
(2)渗透数形结合的数学思想进行习题课教学
情感、态度与价值观
(1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳
(2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达
课时安排
(1)概念课:单调性2课时,最值1课时,奇偶性1课时
(2)习题课:5课时
2024必修一数学优秀教案 篇2
一、教材分析
1.教材的地位与作用:
本节课是人教版教材必修1,化学家眼中的物质世界专题,丰富多彩的化学物质单元,第二标题。物质的量是化学教学中的一个十分重要的概念,它贯穿于高中化学的始终,在化学计算中处于核心地位。在此之前,学生主要从定性的角度或简单的定量角度去学习化学知识,而《物质的量》这一节的学习会使学生对化学中的"量"有一个新的认识。因此教好物质的量的概念,不仅能直接帮助学生掌握好本章中的有关摩尔质量、气体摩尔体积、物质的量浓度的计算,而且也为以后进一步学习有关的计算打下基础。所以,物质的量的教学不仅是本章的重点,也是整个中学化学教学的重点之一。
2.教学目标:
(1)知识目标:掌握物质的量及其单位—摩尔的含义;理解阿伏加德罗常数的含义;通过练习掌握物质的量与物质微粒数目间的关系,初步认识到物质的量与物质质量之间的关系。
(2)能力目标:提高逻辑推理、抽象概括以及运用化学知识进行计算的能力。
(3)情感目标:通过学习概念的推导及应用,形成相信科学、尊重科学、依靠科学的思想;养成学习自然科学的兴趣及不断进取、创新的优良品质。
3.教学重点、难点:
使学生掌握摩尔的概念及物质的量与物质微粒间的转化。
二、教学方法分析
(1)采取目标分层教学法
课前五分钟检测主要是为了加深学生对微粒间转换的理解与应用,为课堂教学的顺利进行做好铺垫。新课教学主要采取对比归纳法:通过与生活中的某些质量小,数量大的实例对比指出化学反应中存在的相同情况--提出物质的量的概念;通过与其它基本物理量和单位的对比提出摩尔的概念,帮助学生通过对比理解和记忆物质的量与摩尔的关系;通过与生活中实例对比(一盒粉笔,一打羽毛球)重点说明摩尔的概念,以此使学生对抽象的摩尔概念具体化;通过适当的分层强调指出学习摩尔需要注意的问题并帮助学生由浅入深的掌握本节知识。
(2)讲练结合
课上讲练结合的教学方式不仅能使老师很快掌握学生的情况,更能让学生及时地熟悉所学知识。
三、学生情况分析
对于化学课的学习,高一学生中还有相当一部分需要老师将一个知识点多次讲练以强化其理解与记忆,因为学生对新概念的接受速度较慢,遗忘速度快。由于物质的量这一节的概念比较抽象,限于接受能力,不能要求学生对这部分内容理解透彻。因此在教学中,要考虑学生的接受能力。
四、 教学程序
[课前检测]:(1)1个H2O中含___个H,___个O,___个原子。
(2)105个H2SO4中含___个H,___个S,___个O,___个原
(3)1个C中含___个质子,___个电子。
(4)1个NH3中含___个质子,___个电子。
(帮助学生回忆微粒间的转换关系,为从"个 --> 摩尔"的转化做好铺垫)
[导入]:
(1)由一句古诗:"谁知盘中餐,粒粒皆辛苦"中大米的单位(粒)和实际生活中并不使用粒的矛盾为后来引出化学反应中微粒的小和多提供思考模式。
(2)通过反应方程式:C + O2 === CO2 引导学生讨论:反应实质是什么?(微粒间的反应);实际中是采用称取质量的方法进行反应,质量如何体现反应的实质?已知一个碳原子的质量是 1.993X10-23g , 计算12g碳含多少个碳原子?(约6.02X1023个碳原子)
[小结]:用所学的知识表达反应实质是很麻烦的,必须引进一个新的物理量--物质的量[新课讲解]:物质的量:表示物质微粒数目多少的物理量。
[投影]:1971年第14次国际计量大会确定七个基本物理量:
[思考]:既然物质的量是表示物质微粒数目多少的物理量,为什么单位不是“个”,而是"摩尔",两者有何关系?
[举例并讨论]: 一盒粉笔 ---- 50支粉笔
一打羽毛球 ---- 12支羽毛球
一箱啤酒 ---- 24瓶啤酒
一摩尔微粒 ---- ?个微粒
(通过联系生活中小和多的统一的实例来帮助学生理解摩尔的概念,并由此引出阿伏加德罗常数)
[讲解]: 一摩尔微粒----NA个微粒
阿伏加德罗常数(NA):12g C-12(含六个质子六个中子的碳原子)所含碳原子个数,约等于6.02X1023mol-1。(在导入中,学生已通过计算得到此数据)
摩尔:物质的量的单位。 简称:摩 符号表示:mol
每摩尔物质含阿伏加德罗常数个微粒。
[投影练习1]:1mol碳原子含有_______个碳原子
1mol铁原子含有_______个铁原子
1mol氧气含有________个氧分子
1mol硫酸含有________个硫酸分子(基本概念的理解
[归纳小结]:学习物质的量需要注意的问题:
(1)物质的量--物理量,摩尔--单位;
(2) 研究对象--微观粒子(原子、分子、离子、质子、中子、电子、原子团或特定组合)
(3)使用时必须指明微粒名称:
[例]: 两种方法:
文字表达--碳原子,硫酸分子,氧气分子,氢氧根离子
符号表达-- C , H2SO4 , O2 , OH—
[投影练习2]: 根据物质的量和摩尔的概念判断正误:
1.摩尔是七个基本物理量之一。 (摩尔是单位)
2.1mol氢,1mol原子氧 。(物质的量研究对象是微粒)
3.阿伏加德罗常数无单位。
4.物质的量就是物质的质量。
(强调学习基本概念所需要注意的问题)
[总结]:再次对所介绍概念进行复习与强调以加深学生对这些概念的重视与理解。
[投影练习3]:1.1mol水分子中含有_______个水分子
2.0.5mol水分子中含有________个水分子
3.4mol水分子中含有________个水分子
4.1.204X1024个水分子是_______摩尔水分子
(不再是简单的1mol微粒,稍加深难度)
[投影练习4]: 1、1mol氧气分子中含有_______个氧分子,含有____个氧原子,___摩尔氧原子。(O2 ~2O)
2、0.5mol水分子中含有___摩H2O,___摩H,___摩O___个H2O,___个H,___个O(H2O ~ 2H ~ O)
3、0.1mol Na2SO4中含有___mol Na+, ___mol SO42-
4、1mol C含有___mol质子,3.5mol C 含有___mol质子 ( 1个C~ 6个质子)
5、1mol Na+ 含有___mol电子, 10mol Na+ 含有___个电子(1个Na+ ~ 10个电子)
(提高难度,让学生通过练习自己总结出由已知微粒的物质的量到与之相关联的微粒的物质的量的计算方法)
[小结]:物质的量与微粒数之间的转换:物质的量 微粒数 NA
[随堂检测]:
A、1mol HCl 含____个HCl 分子,1.806X1024个HCl分子的物质的量是____mol。(考查基本概念的掌握程度)
B、0.5mol H2SO4 含有____mol H , ____mol S, ____mol O, 共_____mol原子。(考查由物质的量向所含原子数的运算方法)
C、3.01X1023个Cl— 的物质的量是___mol,含___个电子,含____mol电子,含_____个质子,含______mol 质子。
(考查给出离子的微粒个数,如何算出离子及所含质子、电子的物质的量)
[讨论]:1摩尔的任何物质的质量是多少?
(通过学生自己阅读发现物质的量和物质质量间的关系)
五、板书
1、定义:表示物质微粒数目多少的物理量。
2、 单位:摩尔--简称:摩 符号表示:mol
(1) 每摩尔物质含有阿伏加德罗常数个微粒。
(2) 阿伏加德罗常数(NA):12g C-12所含碳原子数 NA =6.02X1023 mol-1
3、注意:
(1)物质的量是物理量,它的单位是摩尔。
(2)研究对象:微观粒子(原子、分子、离子、质子、中子、电子、原子
团或特定组合)。
(3)使用时必须指明微粒名称。
2024必修一数学优秀教案 篇3
“物质的量”是鲁科版高中化学必修1第一章第三节的内容,是高一化学的重难点,贯穿着整个高中化学学习的始终,作为一个工具,“物质的量”是连接微观和宏观、定性和定量的桥梁,新教材把它放在高一化学开始,当学生带着兴奋、好奇、期待、畏惧等诸多复杂情绪踏入高中化学世界时,他们的第一个较量对手就是“物质的量”,这一回合较量的成败对他们树立整个高中化学学习信心至关重要。
“物质的量”的教学,从往年学生对这部分内容掌握的情况来看,教学效果不理想。为此今年我对“物质的量”一节的教学进行了反思,并及时调整了教学策略。
一、教学目标要求
1、理解物质的量、摩尔、摩尔质量、阿伏伽德罗常数、气体摩尔体积、物质的量浓度的基本含义及他们之间的相互关系。
2、学会用物质的量进行有关简单计算。
3、学会用物质的量浓度来表示溶液的组成,掌握配制一定体积物质的量浓度溶液的方法。
二、教学效果总结
1、教学目标中的(1)中涉及概念理解不够深刻,关系不能理顺;
2、用物质的量进行有关计算十分困难;
3、用“摩尔”来计数离子、电子尤其困难。
4、初学“摩尔”时的困难挫伤了学生学习化学的积极性,在期中考后的调查中,约有百分之四十的学生感到化学学习困难,成为高一学生在化学上的首个拦路虎之一,而且在后面的学习中,学生一遇到用“物质的量”进行化学方程式的计算时,相当一部分同学视之为难题。
三、学情分析
1、了解学情。
为什么用物质的量进行有关化学反应的简单计算这么困难?为什么一接触到电子、离子的计算学生都傻了眼?学习的过程是学生在原有知识和经验的基础上自我建构、自我生成的过程。下面来分析高一学生的“原有知识和经验”。由于“摩尔”计量的对象是微粒,我们来回顾一下初中化学课标对微粒观的要求:
(1)认识物质的微粒性,知道分子、原子、离子等都是构成物质的微粒。
(2)能用微粒的观点解释某些常见的现象。
(3)知道原子是由原子核和核外电子构成。
(4)知道原子可以结合成分子、同一元素的原子、离子可以互相转化,初步认识核外电子在化学反应中的作用。
“知道”是教学中最低层次的要求,初中课标对初中学生“微粒观”的要求仅仅是能知道微粒的客观存在的直观的层面上,原子、离子结构示意图要求会看,不要求会画,1至18号元素不要求背诵。对于电子,初中学生仅知道“原子是由原子核和核外电子构成,原子核外最外层电子数与元素性质关系密切”。
所以在后面氧化还原反应学习中,要求学生标电子转移的方向和数目时,学生无法建构化学反应与物质得失电子的关系,当题目要求计数微粒的电子数时,学生更一头雾水,再结合摩尔的计算,太困难了。因此初中“微粒观”的过低要求是导致摩尔计算失败的客观原因之一,另外,初中化学计算的单一性也是是建构以“物质的量”为核心的计算失败的更直接的客观原因,初中要求学生“能进行简单的化学方程式的质量的计算。”由于中考对化学方程式计算的要求是低的,所以即使是学习成绩很差的后进生通过大量的机械的训练也能对这类简单的计算熟练掌握,同时也形成思维定势,养成思维依赖。当一个化学方程式中要求计算物质的量、气体的体积、物质的微粒数这些物理量时,很多学生往往先求质量,再通过公式转化为各个物理量,把非常简单的计算过程变成繁琐无比。综上所述,我认为,初中课标对微粒及计算的要求是偏低的,它导致初高中教材的脱节。
2、了解教材。鲁教版必修一化学教材中关于“物质的量”在化学方程式中的运用编排如下:在“物质的量”一节的结尾部分“物质的量浓度”的内容后面,有一句话:学习了“物质的量”这一物理量后,我们可以从一个新的角度来认识化学反应。例如,2H2+O2=2H2O可以理解为2molH2与1molO2在点燃的条件下恰好完全反应生成2molH2O。接着安排了用一个交流研讨题。显然,鲁教版的思路是“建立方法”,利用研讨题建构以“物质的量”为核心的新的计算体系。但是教材中没有相应的标题来突出这部分计算的重要性,没有例题供学生自学,教参中也没有安排相应的课时,以至我们往往用很短的时间来处理这部分内容,事实证明,这样的教学是低效的,是失败的,最后还必修补充讲解。
四、教学策略
在高一学生现有的知识背景下,如何带着学生扎扎实实地建构以“物质的量”为核心的计算体系呢?我提出如下建议:
(1)开学初至少安排几节初高中衔接课。最需要补充的知识点之一包括:按原子序数的顺序背诵1至18号元素,会画1至18号元素原子结构示意图和离子结构示意图,会懂得一些典型化合价与原子结构的关系。在衔接课里打破初中单一的计算体系,让学生学习各种计算技巧,比如守恒法、量差法等,提高计算能力。
(2)化学方程式的微观含义在初中是不做要求的。那么,在高一教授化学方程式的微观含义时必须把它做为一个新的知识点,用几个实例建立化学方程式的微观含义,当学生感受到“一个碳原子和一个氧分子结合生成一个二氧化碳分子”时,较容易建构“1摩尔碳和1摩尔氧气生成1摩尔二氧化碳”的认识。
(3)教授用“物质的量”进行化学方程式的计算时,至少用两节课的时间,带着学生循序渐进地建构以“物质的量”为核心的新的计算体系,在计算中要求学生分别以“质量”为核心和以“物质的量”为核心进行对比,让学生体验到用“物质的量”进行计算带来的便捷感、舒适感和成就感。
反思是教育教学的灵魂,它贯穿始终,在每一个环节中老师都应进行反思。新课程对教师各方面的能力要求也较高,这就需要老师要不断反思教学、完善自己、提高自己,扎扎实实的上好每一堂课。
2024必修一数学优秀教案 篇4
教学目标:
知识技能:使学生理解物质的量浓度的概念;会运用物质的量浓度的概念进行简单的计算;学会配制物质的量浓度溶液的方法和技能。
能力培养:从概念的应用中,培养学生的逻辑思维和抽象概括的能力。
科学思想:通过概念的学习和溶液的配制,培养学生理论联系实际的学习自然科学的思想。
科学品质:培养学生学习自然科学的学习兴趣以及严谨求实的学习态度。
科学方法:通过实验的教学培养学生仔细观察实验现象,发现问题的本质以及独立探讨解决问题的方法。
重点、难点: 物质的量浓度的概念,物质的量浓度溶液的配制。
教具准备:容量瓶、天平、量筒、烧杯、胶头滴管、玻璃棒、试剂瓶、药匙、投影仪、胆矾
教学方法:设疑、启发、实验、讲解等。
教学过程设计:
【导入新课】
我们在初中学习过溶液中溶质的质量分数,应用这种表示溶液浓度的方法,可以计算一定质量的溶液中所含溶质的质量。但是,很多化学反应都在溶液中进行,对于溶液我们通常不称其质量,而是量它的体积。同时,在化学反应中,反应物与生成物物质的量相互间有一定的关系:
例如:2NaOH~H2SO4
2mol∶1mol
在化学反应的溶液中如何体现出溶质的物质的量之比为2:1呢?
【讲述】初中时学习过的溶液中溶质的质量分数,在使用时有很多不方便之处。溶质如果是固体物质,还可以称量,如果是气体或液体,称量它的质量就很不方便。至于溶液的质量就更不好称量,实验室常用量筒来量液体的体积。
【设问】能否用所量出的溶液的体积来表示溶质的物质的量之比为2∶1呢?
【过渡】知道一定体积的溶液里含有多少摩溶质,运算起来很方便。通常我们取溶液的体积为1L。而物质的量浓度的溶液就是使用溶液的体积,用升做单位。
【板书】
【设问】溶质的量在溶液中用什么表示呢?
【板书】 一、物质的量浓度
单位通常是用mol/L表示。
【讲述】(1)溶液体积为1升,而不是溶剂体积是1升;
(2)溶质是物质的量表示,而不是用摩尔质量表示。
【投影】课堂练习
1.用5molNaOH配成500mL溶液,其浓度为___mol/L,取5mL该溶液,其浓度为___mol/L。
【设问】如何应用所学的知识进行计算?
【设问】5mL与500mL的NaOH溶液,它们所含的溶质的物质的量(或质量)相等吗?你能举出生活中的例子来说明吗?
【投影】课堂练习
2.从1L1mol/LNaCl溶液中,分别取出100mL、10mL和1mL溶液,它们的物质的量浓度是否相等?所含溶质各是多少克?
【过渡】物质的量浓度的溶液是生产上和科学实验上常用的一种表示溶液组成的重要方法。因此,我们要学会配制物质的量浓度的溶液。
【板书】二、物质的量浓度溶液的配制
例:配制100mL0.5mol/L的CuSO4溶液。
【设问】配制溶液的第一步首先应知道什么?
【板书】1.计算
【设问】⑴实验室中只存在胆矾晶体,我们可以来计算出所需的溶质的质量,那么如何计算出需要胆矾的质量?
⑵若所取溶质为液体,应如何取?
【板书】2.称量
【设问】用托盘天平来称量固体药品应注意哪些?
【演示】称量12.5g胆矾晶体。
【设问】若称量有腐蚀性的物质,例如:NaOH能否放在纸上称量?应如何称量?
【讲述】我们配制溶液用的主要仪器之一是容量瓶。容量瓶是配制准确浓度溶液的仪器,它上边标有温度和体积。
【设问】⑴容量瓶上边标有温度和体积说明了什么?
⑵能否用容量瓶来溶解固体物质?
【板书】3.溶解
【设问】根据我们前面所学的知识,溶解固体物质应在哪儿溶解?用到哪些仪器?在溶解过程中还应注意哪些问题?
【演示实验】用小烧杯加水溶解12.5g胆矾,并用玻璃棒搅拌。
【设问】溶质溶解后是否可马上放到容量瓶中呢?
【讲述】把溶解好的溶液冷却后,从小烧杯转移到100mL的容量瓶里。
【板书】4.转移
【讲述】把小烧杯里的溶液往容量瓶中转移,由于容量瓶的瓶口较细,为避免溶液洒出,用玻璃棒引流。
【演示】把小烧杯里的溶液沿玻璃棒转移到容量瓶中。
【设问】烧杯和玻璃棒是否需要处理?应如何处理?
【讲述】为保证溶质尽可能全部转移到容量瓶中,应该用蒸馏水洗涤烧杯和玻璃棒二、三次。
【板书】5.洗涤
【讲述】当往容量瓶里加蒸馏水时,距刻度线2~3cm处停止,为避免加水的体积过多,改用胶头滴管加蒸馏水到刻度线,这个操作叫做定容。
【板书】6.定容
【设问】定容时如果不小心水加多了,可否用胶头滴管取出多余的溶液呢?
【讲述】所以,定容失败,只好重新做。定容时还要注意凹液面下缘和刻度线相切,眼睛视线与刻度线呈水
平,不能俯视或仰视,否则,都会造成误差。最后把容量瓶瓶塞塞紧,把容量瓶倒转过来摇动多次,使溶液混合均匀叫做摇匀。
【板书】7.摇匀
【设问】容量瓶摇匀的操作具有特殊性,那么应如何操作呢?
【演示】摇匀后,再把配好的溶液倒入试剂瓶中,盖上瓶塞,贴上标签。
【设问】在溶液配制过程中哪些操作可能引起溶液浓度的误差?定容时若俯视或仰视刻度线,对溶液的浓度有何影响?
【小结】①物质的量浓度与溶液中溶质的质量分数一样,都是用来表示溶液组成的,但在应用中物质的量浓度有很多方便之处。单位是mol/L。
③配制物质的量浓度溶液的操作步骤:计算、称量(或量取)、溶解、转移、洗涤、定容、摇匀、装瓶贴签。
【作业】课本第61页,第1题⑴⑸⑹,第⒊题⑵⑶。
【随堂检测】(1)配制200mL0.1mol/L的NaCl溶液,需NaCl的质量为多少克?
(2)欲配制1mol/L的氢氧化钠溶液250mL,完成下列步骤:
①用天平称取氢氧化钠固体___g。
②将称好氢氧化钠固体放入___中加___蒸馏水将其溶解,待___后,将溶液沿___移入___mL的容量瓶中。
③用少量蒸馏水冲洗___次,将冲洗液移入___中,在操作过程中不能损失点滴液体,否则会使溶液的浓度偏___(低或高)。
④向容量瓶内加水至刻度线___时,改用___小心加水至溶液凹液面与刻度线相切,若加水超过刻度线,会造成溶液浓度偏___,应该___。
⑤最后盖好瓶盖___,将配好的溶液移入___中并贴好标签。
2024必修一数学优秀教案 篇5
一、说教材
1、教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、 教学目标
(1)知识目标:
a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:
a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:
a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、说教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、集合的符号记法,为本节重点做好铺垫。
6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:
⑴集合元素的确定。
⑵理解两符号的含义。
7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
2024必修一数学优秀教案 篇6
各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。
一、教材分析:
教材的地位和作用:
集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子。从教材我归纳出本节内容的教学重点和难点。
(一)教学重点:集合的基本概念和表示方法,集合元素的特征
(二)教学难点:运用集合的三种常用表示方法、列举法与描述法,正确表示一些简单的集合
二、教学目标:
(一)知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;
(2)使学生初步了解“属于”关系的意义;
(3)使学生初步了解有限集、无限集、空集的意义
(二)能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;
(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
三、学情分析:
针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。
四、教法分析:
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:
(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
(2)营造民主的教学氛围,使学生参与教学全过程。
(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。
(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。
五、教学过程
(一)复习导入
(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
(2)教材中的章头引言;
(3)教材中例子(P4)。
(二)讲解新课
(1)集合的有关概念
(2) 常用集合及表示方法
(3)元素对于集合的隶属关系
(4)集合中元素的特性
(三)课堂练习
1下列各组对象能确定一个集合吗?
(1)所有很大的实数的集合 (不确定)
(2)好心的人的集合 (不确定)
(3){1,2,2,3,4,5} (有重复)
(4)所有直角三角形的集合 (是 的)
(5)高一(12)班全体同学的集合(是 的)
(6)参加2008年奥运会的中国代表团成员的集合(是 的)
2、教材P5练习1、2
六:总结
1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征。
2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握。
2024必修一数学优秀教案 篇7
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1、转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2、发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3、详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4、加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
2024必修一数学优秀教案 篇8
一、具体目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的`一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学
二、本学期要达到的教学目标
1、双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2、能力培养:
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3、思想教育:
三、进度授课计划及进度表(略)
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中一年级上学期数学教学计划,希望大家喜欢。
2024必修一数学优秀教案 篇9
一、指导思想:
使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。
二、基本情况分析:
1、4班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。
5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。
2、4班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。
5班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。
3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:
三、教材分析:
1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。
2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。
3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。
4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、
5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。
6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。
7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。
8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。
四、教学要求:
1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。
2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。
3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。
4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。
5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。
6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。
7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
编辑推荐
高一数学必修一教案书(精华十篇)
高一数学必修一教案书 篇1

教材分析:
本单元是非常有趣的数学活动,也是逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本单元主要要求学生能根据提供的信息,借助集合圈进行判断、推理,得出结论,使学生初步接触和运用集合圈分析问题、解决问题。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生借助几何直观思考问题的意识。
教学目标:
1、在具体情境中使学生感受集合的思想,感知集合图的产生过程。
2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重点:
让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
教学难点:
对重叠部分的理解。
课前准备:
课件、呼啦圈2个、磁性圆片
教学过程:
一、创设探究情境,引领学生初步感知。
1、创设情境,激发兴趣。
脑筋急转弯:两位爸爸和两位儿子一同去海洋世界(每人都得买一张票),可是他们只买了3张票,便顺利地进去了。这是为什么?
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。
2、设置悬念,引人入胜
师:“大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。”
二、创设实践情境,引领学生深入理解。
(一)报名参加数学比赛:四宫数独和六宫数独
1、师:三年级一班有3名学生报名参加了四宫数独,4名学生报名参加了六宫数独。
2、出示参加四宫、六宫数独比赛的学生名单:
四宫:子宜、佳琳、俊轩
六宫:子宜、晓晴、子凌、方华
3、数一数,参加四宫的有几位同学?(3人) 参加六宫的有几位同学?(4人)师:一共有几人参加比赛?
生:7人或6人。
师:究竟是6人?还是7人呢?我们请这些同学上台,让我们一起数一数,好吗? 请以上名字的.同学上台(同学们一起喊他们的名字)
四宫站在左边,六宫站在右边。(矛盾:子宜两边走)
师:子宜,为什么你要两边走呢?
同学们,出现这种情况,我们该怎么处理呢?同学们在小组里小声地有序地说说自己的办法。
4、小组讨论:请想到方法的同学上台进行调整。(把重复参赛的同学放在两圈的交叉位置,并说一说各个组的名单)
5、师:探究:如果我们不用语言和动作,还可以用一种什么样的方法来表示,“既能清楚地看出每个人的情况,又能明显看出一共有多少人”呢?
学生小组合作想办法。
请同学们在白纸上画一画,画完后小组内说说你是怎么表示的。(画集合图、韦恩图)。 师生共同画出集合图(利用呼啦圈画,板书)
师:你真有创意,只用简简单单的两个圈,就把两个组成员之间的关系表示出来了。这样的图我们把它叫做集合图,今天我们学习的内容就是数学广角—— 集合。
(板书课题:数学广角——集合)这种图我们也叫它韦恩图或文氏图,因为它是十九世纪英国数学家韦恩最先开始使用的,所以就以“韦恩”来命名了。
6、观察黑板上的集合图,让学生了解集合图各部分的意义。
师:谁来当小老师,介绍一下集合图中各个圈表示的意思啊?
7、三(1)班一共有多少人参加比赛?根据集合图,列出算式。
小组讨论:写算式,并进行汇报。(算法多样化)
8、回顾刚才的做法:(课件)
三、能力提升。
1、提出问题。
师:如果三(2)班也有3名同学参加了四宫比赛,4名同学参加了六宫比赛,想一想,他们班可能会有多少人参加了比赛?
3、学生汇报。
学生观察,说一说规律:各项目的总人数 — 重复的人数 = 参赛的总人数。
举例:三年级一共有20人参加比赛,其中跳绳12人,跑步15人。问两项都参加的几人? 12+15-20=7(人)
四、创设拓展情境,引领学生形成策略。
1、现在,我们再回过头去看看上课开始时老师给大家出的脑筋争转弯吧:两位爸爸和两位儿子一同去海洋极地世界(每人都得买一张票),可是他们只买了3张票,便顺利地进了电影院。这是为什么?
师:两位爸爸和两位儿子一共是几个人?真有这么多人吗?可能会有什么情况?
2、同学们排队做操,小明排在从前数第9个,从后数第7个,小明这一排一共有多少个同学?
3、小调查:本班喜欢吃苹果的有几人,喜欢吃香蕉的有几人?
(1)既喜欢吃苹果又喜欢吃香蕉的有几人?
(2)只喜欢吃苹果的有几人?
(3)只喜欢吃香蕉的有几人?
先独立思考,再与同桌交流解决问题的策略(引导学生借助重叠图来理解算法),然后全班反馈。反馈时要求学生说出自己的理解。
五、自我小结,共同提高
师:同学们今天表现都很突出,谁愿意来说说自己今天有什么收获?和同学们一起分享。课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题。
高一数学必修一教案书 篇2
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
高一数学必修一教案书 篇3
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、 重点:指数函数的图像和性质
2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:
引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的.函数。什么是函数?
S: --------
T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )
S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),
从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。
问题 1:为何要规定 a > 0 且 a ≠1?
S:(讨论)
C: (1)当 a
就没有意义;
(2)当 a=0时,a x 有时会没有意义,如x= - 2时,
(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数( )
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x
高一数学必修一教案书 篇4
教学目标与解析
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
问题诊断分析在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
教学过程
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
高一数学必修一教案书 篇5
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
高一数学必修一教案书 篇6
教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特征;
(2) 理解元素与集合的"属于"和"不属于"关系;
(3) 掌握常用数集及其记法;
教学重点:
掌握集合的基本概念;
教学难点:
元素与集合的关系;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流;
(3) 非负奇数;
(4) 方程的解;
(5) 某校20xx级新生;
(6) 血压很高的人;
(7) 著名的数学家;
(8) 平面直角坐标系内所有第三象限的点
(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA
例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A
4A,等等。
6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。
7.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
(二)例题讲解:
例1.用"∈"或""符号填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。
例2.已知集合P的元素为, 若3∈P且-1P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1- 2题;
2.预习集合的表示方法。
高一数学必修一教案书 篇7
一、本节课内容的数学本质
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
二、本节课内容的地位、作用
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
三、学生情况分析
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的'函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。
四、教学目标定位
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备。
通过探究、展示、交流,养成良好的学习品质,增强合作意识。
通过具体问题体会逼近过程,感受精确与近似的相对统一。
五、教学诊断分析
“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。
六、教学方法和特点
本节课采用的是问题驱动、启发探究的教学方法。
通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。
本节课特点主要有以下几方面:
1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。
2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。
以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。
3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。
4、恰当地利用现代信息技术,帮助学生揭示数学本质。
本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel
程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。
七、预期效果分析
以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。
另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。
高一数学必修一教案书 篇8
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的'概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题.
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3.求基本事件总数常用的方法:列举法、图表法.
高一数学必修一教案书 篇9
教学目标:
1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。
2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:
让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。
教学难点:
学生对重叠部分的理解。
教学准备:
多媒体课件、姓名卡片等。
教学过程:
(一)创设情境,引出新知
1.出示信息。
出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。
2.提出问题,激发“冲突”
让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。
(二)自主探究,学习新知
1.独立思考表达方式,经历知识形成过程。
师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?
学生独立思考,并尝试解决。
2.汇报交流,初步感知集合概念。
(1)小组交流,互相介绍自己的作品。
(2)选择有代表性的方案全班交流。
请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。
预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。
预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。
预设3:把参加两项比赛学生的`姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。
3.对比分析,介绍韦恩图。
(1)对比、分析,提示课题。
师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?
预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。
预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。
师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)
(2)介绍用韦恩图表示集合。
师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。
师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)
师:这个图表示什么?
预设:参加跳绳比赛的学生的集合。
出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。
在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。
(3)介绍用韦恩图表示集合的运算。
提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?
通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。
提问:中间重叠的部分表示的是什么?
预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。
提问:整个图表示的是什么?
预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。
4.列式解答,加深对集合运算的认识。
(1)尝试独立解决。
(2)汇报交流,体会解决问题的多种方法。
预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。
(3)比较辨析,体会基本方法。
通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。
(三)联系生活,巩固练习
1.完成“做一做”第1题。
先独立完成,再汇报交流。
可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。
2.完成“做一做”第2题。
学生先独立完成,再汇报交流。
提问1:你是用什么方法解答第(1)题的?要注意什么?
预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。
提问2:第(2)题是求什么?你是用什么方法解答的?
预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。
(四)全课小结
师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。
高一数学必修一教案书 篇10
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的.通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
数学必修3教案精华十篇
值得一读的文章我们为你推荐“数学必修3教案”。根据教学要求,老师在上课前需要准备好教案课件,教案课件里的内容是老师自己去完善的。老师上课时会按照教案课件来实施。只有不断进步才能实现更大的梦想!不过程海鹰说,教学只是个“工”字,它的根在“人”身上,是人的世界,教者和学者的精神共鸣,是凝聚着爱和智慧的过程。教师是智慧的播种机,也是灵魂的抚慰者,在学生身上撒下种子,陪伴他们走过成长的每一个阶段。不断进步的教育者必然会给学生带来更大的梦想,他们努力去完善自己的教案课件,提供更好的教学内容,为学生的学习之路打下坚实的基础。
数学必修3教案(篇1)
1、学生浏览课文,概括情节,然后由师生共同讨论回答“旁批”的提问。
2、关注阿Q对革命的态度及其变化,阿Q的革命目的,挖掘其思想根源。
①“宣统三年九月十四日--即阿Q将搭连卖给赵白眼的这一天--三更四点,有一只乌篷船到了赵府上的河埠头。”绍兴光复这么庄严的事件,作者却用阿Q卖搭连给赵白眼这件事来作补充说明,你认为作者在这里有什么用意?
提示:一方面说明普通老百姓并不关心什么绍兴光复,而只注意身边发生的小事,辛亥革命与人们的生活差得太远;表明作者对辛亥革命的态度是怀疑的,把绍兴光复与阿Q卖搭连这事联系在一起,显得滑稽可笑。
②“至于革命党,有的说是便在这一夜进了城,个个白盔白甲:穿着崇祯皇帝的素。”此句怎样理解?
提示:这说明清朝已经灭亡了,但未庄人的思想仍停留在明末清初的几百年的过去。民众之愚昧落后不言自见。
③阿Q 先是对革命党“深恶而痛绝之”,何以很快又向往革命,要“革这伙妈妈的命”?
提示:阿Q 身上有着狭隘保守排斥异端的思想,他天生反对变革现实的一切事情,所以他一开始听到革命时很反感,觉得与他为难,便“深恶痛绝”;可是他身上又有着盲目趋时的特点,加上他对现状的不满,尤其自己生活的不痛快,看到举人老爷这样怕,所以他自然又向往革命了。这表明他对革命态度的不稳定性,对革命的不理解甚至误解。
④将阿Q宣布革命后,赵太爷的“老Q”和赵白眼的“阿Q哥”与先前的“混小子”对比,揣摩一下赵太爷等人的内心世界,说说此时的赵太爷又变成了一个怎样的赵太爷?
提示:此时的赵太爷是一个惶恐狡诈卑怯的“弱势”土地主。
⑤阿Q的“白日梦”表明他革命的目的是什么?
提示:用他自己的话说就是“要什么就是什么,欢喜谁就是谁”;用我们的话来说就是金钱、权力和女人。
⑥老尼姑的“革过一革的”这五个字有何含义。
提示:表明当时“革命”一词成为人们的口头禅,但又不理解什么是革命,所以老尼姑演绎说“革过一革的”,这是对革命的绝大讽刺。所谓革命,就是假洋鬼子和秀才的打砸抢罢了。
⑦说说“这是咸与维新的时候了……也相约去革命”这句话的讽刺意味。
提示:揭示两个反动人物“革命”行动的丑恶卑劣,意味深长。也从另一个侧面揭示辛亥革命中资产阶级势力与封建势力勾结起来夺取革命果实的史实。“情投意合”“革命”含有极大的讽刺意味。
⑧阿Q与赵秀才、假洋鬼子虽“素不相能”,但都想到去静修庵“革命”,这说明什么?
提示:说明他们的革命动机都是十分低下的,无非就是找一些弱者来欺负一番,找一些封建主义的东西来革一革罢了。它让读者明白,辛亥革命之所以失败,就是这样的人太多了。
3、“革命”的阿Q对革命的认识糊涂:
封建意识:革命党便是造反,造反便是与他为难, “ 深恶而痛绝之”。
革命动机:举人老爷怕革命,未庄的男女慌张,阿Q快意。革这伙妈妈的的命
革命对象:第一个该死的是小D和赵太爷,还有秀才,还有假洋鬼子,留几条么?王胡本来还可留,但也不要了。
4、注意未庄人对革命后的阿 态度的变化。
二、学习第八章。
1、概括情节,探讨旁批的问题。
2、体会小说对比描写手法的奇妙。不准革命的阿Q为什么会这样?说明革命对于阿Q意味着什么?
阿Q轻轻的走近了,站在赵白眼的背后,心里想招呼,却不知道怎么说才好
用原文回答:洋先生不准他革命,他再没有别的路;从此决不能望有白盔白甲的人来叫他,他所有的抱负,志向,希望,前程,全被一笔勾销了
3、读读议议:
①“带兵的也还是先前的老把总”表明什么?
提示:说明“革命”换汤不换药,许多投机分子钻进革命队伍中,窃取了革命果实。
②“赵司晨脑后空荡荡的走来”,“空荡荡”用的妙在哪里?
提示:这个词把人们看惯了脑后的辫子,而现在一下子看不见辫子时不习惯的微妙感觉写出来了,很有滑稽感。
③未庄人对秀才挂“银桃子”“都惊服”,“惊服”一词有何含义?
提示:这个词刻画了未庄人前后相连的两种心态,先是猜想“银桃子”可能是当大官的象征而吃惊,过后很快便佩服,表明未庄人的趋炎附势心理。
④“我是性急的,……谁愿意在这小县城里做事情。……”假洋鬼子的这段“演讲”,满口“鬼话”,不提辛亥革命的真正功臣孙中山、黄兴等,却提一个投机分子洪哥。说说这段话刻画了假洋鬼子一副怎样的嘴脸。
提示:满口鬼话,大吹牛皮,捏造革命经历个革命资本。半吊子知识分子,外表新式,实际上是一个投机、善变、钻营的封建余孽。他的这番话只能蒙骗没见过世面的未庄乡下人。
⑤洋先生为什么不准阿Q“革命”?
提示:减洋鬼子作为一个与封建主义有着千丝万缕联系的新式资产阶级人物,注定与广大人民有着天然的隔膜,并没有丝毫共同的利益可言。尤其是,假如假洋鬼子同意了阿Q与他一起革命,那么就会认为是对自己身份的极大污辱。所以他决不准阿Q革命,决不同阿Q共一条战壕。
⑥阿Q认为洋先生不准其革命,“再没有别的路”,你认为呢?
提示:凭阿Q当时的觉悟程度,他认为自己是无路可走的,实际上他也确实是无路可走。本来可以投奔真正的革命党,但按照他的'觉悟,他不可能找到真正的革命党。
⑦赵家遭抢这两段话中用了六个“抬出了”,对于表现阿Q此时的心情有怎样的效果?
提示:强调阿Q没有被邀请革命而表现的焦虑不安的心情,更体现他革命动机的低下,那就是想分点东西。
⑧阿Q要告假洋鬼子“造反”的状,你对这一情节怎样理解?
提示:一方面参加革命不成,就要报复,这表现了他思想的狭隘;另一方面,说明阿Q的革命愿望也经不起考验,因为他对于革命的认识根本就不明确。
4、特别强调,阿Q不许小D这样与他情况相似的人革命所流露的自私狭隘思想;未庄人对自由党的“柿油党”的称法和银桃子抵翰林的认知,都显示了辛亥革命的不彻底性,百姓所有的还都是旧思想旧认知。
三、学习第九章。
1、这一章写阿Q被当作替死鬼被捕、被审和被处决,思想开掘深刻,讽刺入木三分,是作者精心打造的“大团圆”,也是编辑们着意设计“旁批”的一章。因而研读时应调动多种朗读方式去朗诵,去品读,并认真回答“旁批”所提出的每一个问题。
2、重点研讨:
①赵家遭抢了,未庄人为什么既“快意”又“恐慌”?
提示:“快意”是因为未庄人平时虽说敬畏赵太爷,但作为被压迫者,心底里还是恨赵太爷这种压迫者,所以听说赵家遭抢,自然就“快意”;“恐慌”是因为对形势不了解,怕危及自己的财产和生命。
②捉拿阿Q竟然用那么多兵,作者这样写有何用意?
③“高明”一词通常是什么意思?这里怎么解释?
提示:“高明”一般指见解、技能等的高超,这里作者是一种创造性的用法,意思是高大明亮。也就是说土谷祠并没有比大牢更好。
④阿Q在“民国”的公堂上行下跪之礼,你怎么看待这件事?
提示:阿Q的下跪,表明他身上的奴性根深蒂固。见到官就下跪,这是中国几千年封建统治者对人民驯服的结果,背后的实质是对国民人格的污辱,但国民长期如此,就像阿Q一样,觉得某人有来头,就自然下跪。作者描写这一情节,一方面是揭露统治者的愚民政策,另一方面是批评国民的奴性人格。
⑤阿Q“画圆圈”这样的细节描写,表现了阿Q什么性格?
⑥小说中前后共有几次写阿Q“睡着了”?说说其言外之意。
提示:大概有五六次,这不仅是写他生理上的睡着了,也暗写他的麻木不仁。作者忧虑国民在铁屋子里沉睡不醒,又希望他们惊醒。
⑦死到临头的阿Q,精神上还那么“泰然”,对此你有什么想法?
⑧“狼”在文中有何象征意义?
提示“狼”象征着那些麻木的看客,不仅充当看客,也充当统治者刽子手的帮凶,一起来吃掉阿Q。
⑨“他们便渐渐的都发生了遗老的气味”这句话是什么意思?
提示:万变不离其宗,顽固的封建阶级本性不变,得了“银桃子”比作“顶子”“翰林”,失了辫子如丧考妣,终于还是迷恋封建王朝的“遗老”。
⑩独写一段未庄人对阿Q被枪毙的态度来结束本文,它隐含作者的什么用意。
提示:给读者揭示一个十分悲观的现象:社会仍是如此黑暗,国民仍是如此愚昧,中国,何时才能得救?
3、旁批之外,强调阿Q三次“似乎觉得,大约本来要”怎样的心理。这样的心理其实是一种认命的宿命观,这样的想法使一切都成为自然,从而淡化了人的努力和挣扎。
4、纠正最后一个旁批概括上的不完全,理解鲁迅的意图。
四、布置作业。
概括阿Q形象,理解作者的创作意图。
数学必修3教案(篇2)
2.理解积累一些文言实词。
3.认识作者通过描写“世外桃源"所表达的不满黑暗现实,追求理想社会的思想感情。
教学重点:
(1)朗读、背诵文言文。 (2)理解积累一些文言实词。 (3)把握文章的叙事线索。
教学难点:
认识作者通过描写“世外桃源"所表达的不满黑暗现实,追求理想社会的思想感情。
同学们学过“世外桃源”这个成语吗?它就出自我们即将学习的课文《桃花源记》,这个成语是晋朝陶渊明在《桃花源记》一文中所描述的一个与世隔绝的,不遭战祸的安乐而美好的地方。现在我们一起跟着渔人到这个世外桃源去看看。
陶渊明生于东晋末朝,出身于没落的地主官僚家庭。他少时胸怀大志,博学能文,任性不羁。当时社会**不安,他有志不得展。做过小官,由于不满官场的丑恶,弃官回乡,这时他四十一岁,从此过着远离官场的隐居生活。
本文写于陶渊明已经五十七岁的时候,他不满黑暗的政治现实,同时由于他和农民接近,理解他们追求理想社会的愿望,所以写了这篇记和诗。
1、学生自由朗读课文,通过文中注释及工具书解决文中的生字,力求做到准确地朗读课文。
2、教师范读课文,边读边指出须注意的字词读音。
便舍(she3)船 豁(huo4)然开朗 屋舍(she4) 俨(yan3)然 阡陌(qian1mo4)
衣着(zhuo2) 黄发(fa4)垂髫(tiao2) 怡(yi2)然 要通邀读yao1意为邀请
咸(xian2) 间(jian4)隔 魏(wei4)晋 郡(jun4)下 诣(yi4) 刘子骥(ji4)
3、学生自由朗读后分男女朗读。
4、学生结合注释初步理解课文内容,准备开展理解活动。
四、我译大家评。
1、一个同学翻译一个句子,其他同学听后做评论,看翻译得好不好,若发现不足或有不同意见,可以说出自己的意见。
B、结合注释。注释中往往对一些难以理解的字词进行解释的。
C、结合上下句加以猜测。
D、增删调补。
3、翻译文言文的要求:
A、直译为主,意译为辅,凡是能够直译的,就按照原文逐字逐句对照翻译;
B、遇到古今异义、通假字、文言句式等语言现象而无法直译时,就可以灵活地或适当地采用意译的方法。
C、译文要通顺,没有语病,符合表达习惯。
为业:靠……谋生。缘:沿。夹岸:两岸。杂:别的。鲜美:鲜艳美丽。异:诧异,惊异。穷:走完。
DD东晋太元年间,(有个)武陵人靠捕鱼谋生。(有一天)他沿着小溪划船,忘了路程的远近。忽然遇到(一片)桃花林,(桃树)在溪流两岸,长达几百步,中间没有别的树。(地上)芳草鲜艳美丽,落花纷纷。渔人非常诧异。再往前划去,想走到这林子的尽头。
豁然:开通、敞亮的样子。开朗:开阔明亮。平旷:平坦开阔。 属:类。 悉:全。
DD (桃)林在溪水发源的地方就没有了,(紧接着)就是一座山,山上有个小洞口,(里面)隐隐约约有点光亮。(渔人)就下了船,从洞口进去。初进时,洞口很窄,只容一个人通过。又走了几十步,突然(变得)开阔明亮了。(这里)土地平坦开阔,房舍整整齐齐,还有肥沃的田地、美丽的池塘和桑树、竹子之类。田间小路,交错相通,(村落间)能听见鸡鸣狗叫的声音。(那里面的)人们来来往往耕田劳作,男女的穿戴,完全像桃花源外面的人。老人和小孩都充满喜悦之情,显得心满意足。
乃:于是。所从来:从哪儿来。要通邀,读yao1意为邀请。咸:都。问讯:打听消息。先世:祖先。妻子:妻子儿女。邑人:同乡人。不复出焉:不再从这里出去。焉:于之,从这里。间隔:断绝了往来。皆:都。叹惋:感叹,惋惜。延:请。语云:告诉(他)说。不足:不值得
DD(村中人)见了渔人,于是大吃一惊,问(渔人)从哪里来,(渔人)详尽地回答了他。(那人)就邀请(渔人)到自己家里去,备酒杀鸡做饭菜(款待他)。村中的人听说有这样一个人,都来打听消息。(他们)说祖先(为了)躲避秦时的战乱,带领妻子儿女及乡邻来到这与人世隔绝的.地方,不再从这里出去,于是就与外面的人断绝了往来。(他们)问起现在是什么朝代,竟然不知道有过汉朝.更不必说魏朝和晋朝了。渔人把自己听到的事详细地告诉他们,
DD(渔人)出来后,找到他的船,就沿着旧路(回去),(一路上)处处做了记号。回到郡里,去拜见太守,报告了这些情况。太守立即派人跟他前往,寻找先前做的标记,终于迷失了(方向),再也没找到原来的路。
DD南阳刘子骥,是高尚的名士;听到这件事,高兴地计划前往,没有实现,不久病死了。此后就再也没有问路探访(桃花源)的人了。
今节课我们主要的任务是疏通文中字词,初步理解课文内容。
今节课我们通过多种形式的活动来熟悉、理解课文内容为主。
二、强化朗读,熟读成诵。
三、检查学生对课文内容的理解。
学生看着课文翻译,要求不看翻译工具书,其他同学认真听,不足处请指出。(一人一段)
妻子 DD古义:妻子儿女 率妻子邑人来此绝境 今义:指男方的配偶,老婆
绝境 DD古义:与世隔绝的地方 来此绝境 今义:没有出路的地方
无论 DD古义:不要说,更不必说 无论魏晋 今义;不管(连词)
津 DD古义:渡口这里问津指探访。 后遂无问津者 今义:唾液
舍:舍弃DD 便舍船 房子DD 屋舍俨然
寻:寻找DD 寻向所志 不久DD 寻病终
志: 动词,做标记 DD处处志之 名词,标记 DD寻向所志
为:作为DD捕鱼为业 对DD不足为外人道也
向: 以前DD 寻向所志 对着DD 眈眈
缘溪行DD名词作动词,沿着。
欲穷其林DD形容词作动词,走完。
未果,寻病终DD-名词作动词,实现。
渔人甚异之DD形容词作动词,意为感到惊奇。
有几个出自本文的成语,请找出来并理解,完成练习册P63第9题第四小题。
世外桃源DD原指与现实社会隔绝、生活安乐的理想境界。后也指环境幽静生活安逸的地方。借指一种空想的脱离现实斗争的美好世界。
豁然开朗DD从黑暗狭窄变得宽敞明亮。比喻突然领悟了一个道理。
怡然自乐DD形容高兴而满足。
与世隔绝DD与社会上的人们隔离,断绝来往。形容隐居或人迹不到的极偏僻地方。
无人问津DD比喻没有人来探问、尝试或购买。
今节课我们的任务有朗读背诵、归纳字词、理解出自本文的成语。同学们回去要对课文进行创造性阅读,在阅读时要提出你质疑之处,下节课我们共同来理解。
七、作业 翻译下面文言句子。
1.阡陌交通,鸡犬相闻。
2、黄发垂髫,并怡然自乐。
3.率妻子邑人来此绝境。
4、问今是何世,不知有汉,无论魏晋。
5.此人-一为具言所闻。
上节课我们已疏通了文章意思,这节课我们一起分析文章的内容。
1、作者怎样描写桃花林的自然景色的?
DD夹岸数百步,中无杂树,芳草鲜美,落英缤纷。
2、作者怎样描写桃花源的生活环境的?
DD土地平旷,屋舍产然,有良田美池桑竹之属。阡陌交通,鸡犬相闻。
3、作者怎样描写桃花源人的热情好客的?
DD便要还家,设酒杀鸡作食。村中闻有此人,咸来问讯。余人各复延至其家,皆出酒食。
4、桃源人见渔人为什么“乃大惊”?
DD写出桃源人对陌生人的惊异,显示桃源与世隔绝的久远。
5、渔人-一为具言所闻,桃源人为什么“皆叹惋”?
DD为桃源外的世界如此**,黑暗而叹惋,为桃源外的人没有过上安定和平的生活而叹惋。
DD不希望外人来打扰这里的生活。也为下文再寻桃源不得埋下伏笔。
7、渔人出桃源时,“处处志之”,为什么再往时,“寻向所志,遂迷,不复得路”?
DD暗示桃花源是虚构的,在现实生活中是不存在的。表达了作者无可奈何的叹惋之情
8、为什么说桃花源是当时的理想社会?我们今天应当怎么评价?
DD作者虚构的世外桃源,是与作者所处的现实社会相对照的。这里景色优美,土地肥沃,资源丰富,风俗淳朴;这里没有压迫,没有战乱,社会平等,和平安宁,确实是当时乃至整个封建社会人民理想的世界。这理想在一定程度上反映了广大人民的愿望,但在当时的条件下是不可能实现的,因而它只是一种空想。
1、全文以什么作为叙事线索?
2、当时渔人是顺流划船还是逆流划船?请找出依据?
3、渔人是第一次来这里吗?请找出依据?
4、渔人忘路之远近是因为溪流鱼多,渔人忙于捕鱼,迟迟不肯收手,还是渔人一无所获,因而不甘心,仍一路撒网而去?
5、渔人再探桃花源是否言而无信?为何找不到原先做的标记?
6、桃花源的社会与渔人所生活的社会形成鲜明的对比?请从文中找出依据?
DD村人说来此绝境的原因是“避秦时乱”,说明这里是没有战乱、没有压迫的理想地方;
村人由于长时间与外界断绝来往,因此对外面的世界一无所知,以至连桃源外的朝代的更替也不知道,渔人把自己所知道的事情都告诉村人,村人听了都感叹惋惜,为桃源外的世界如此**,黑暗而叹惋,为桃源外的人没有过上安定和平的生活而叹惋同时又为自己能置身事外而感到庆幸。
四、教师小结:
陶渊明因生活在战乱频繁的环境里,因而构想了他心目中的理想社会,表达的不满黑暗现实,追求理想社会的思想感情,具有一定的积极意义
数学必修3教案(篇3)
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的`问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
数学必修3教案(篇4)
1.知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法.
2.能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。
重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。
难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系.
4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A.B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
1.(·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
2.(·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积
(一)、基础自测:
1.棱长为a的正方体表面积为__________.
2.长、宽、高分别为a、b、c的长方体,其表面积为___________________.
3.长方体、正方体的侧面展开图为__________.
4.圆柱的侧面展开图为__________.
5.圆锥的侧面展开图为__________.
(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示.
(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示.
(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.
(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示.
(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.
例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为( )
例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是( )
(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积.
例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为( )
A.B.2 C. D.
(四).巩固练习:
1.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.
2.已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4 cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2).
3.如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为( )
(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.
(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.
(3)求圆柱的侧面积只需利用公式即可求解.
1.(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是( )
2.(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为( )
3.(2013广东)若一个圆台的正视图如图所示,则其侧面积等于( )
数学必修3教案(篇5)
本节课重在探究等比数列的前n项和公式的推导及简单的应用。教学中注重公式的形成过程及数学思想方法的渗透,并揭示公式的结构特征和内在联系.就知识的应用价值来看,它是从大量数学问题和现实问题中抽象出来的模型,在公式推导中所蕴含的数学思想方法在各种数列求和问题中有着广泛的应用.就内容的人文价值上看,它的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生数学的思考问题的良好载体.
知识与技能: 掌握等比数列的前n项和公式以及推导方法;会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
过程与方法: 经历等比数列前n 项和的推导过程,总结数列求和方法,体会数学中的思想方法.
情感态度与价值观:通过教材中的实际引例,激发学生学习数学的积极性及学习数学的主动性.
[创设情境]
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
数学必修3教案(篇6)
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
六、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
七、 新课教学
1. 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B
Venn图表示: 读作:“A并B” 即:
A∪B={x|x∈A,或x∈B}说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2. 交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B
读作:“A交B” 即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。 拓展:求下列各图中集合A与B的并集与交集
集
3. 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。
A
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary
set),简称为集合A的补集,
记作:CUA
即:CUA={x|x∈U且x∈A}
补集的Venn图表示
说明:补集的概念必须要有全集的限制
4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的
关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。
5. 集合基本运算的一些结论:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=?
若A∩B=A,则A?B,反之也成立
若A∪B=B,则A?B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
6. 课堂练习
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=?
(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z
(3)集合A?{n|nm?1?Z},B?{m|?Z},则A?B?__________22
5(4)集合A?{x|?4?x?2},B?{x|?1?x?3},C?{x|x?0,或x? 2
那么A?B?C?_______________,A?B?C?_____________;
八、 作业布置:(1) 已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且
X?A??,X?B?X,试求p、q;
(2) 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A?B={-2,0,1},求p、q;
(3) A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且A?B ={3,7},求B
数学必修3教案(篇7)
教学准备
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n—1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____。
例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k—1,所以{cn}中的第k项是等差数列中的第2k—1项。关键是对通项公式的理解)
1、 小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、作业:
P129:1,2,3
思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?
教学设计说明:
1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1)通过复习等差数列的定义,类比得出等比数列的定义;
2)等比数列的.通项公式的推导;
3)等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
数学必修3教案(篇8)
一、教学目标
1、知识与技能:
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(四)巩固深化
练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题
(五)归纳整理:由学生整理学习了哪些内容
数学必修3教案(篇9)
《从百草园到三味书屋》教学实录(人教版七年级必修) 教案教学设计
《自由的生存,永远的神往》是系列口语交际活动--做一回小记者中的一个部分。之前,我们刚刚学了口语交际《做一回小记者》,明确了作为记者和答者必须符合的条件和要求,当堂还进行了对“二○○二年江苏省奥数竞赛一等奖”同学的采访训练。基于学生对真正的采访,记者答问没有实践的经验,所以此节课效果不佳。洪编版七年级语文(下)在《做一回小记者》后安排了鲁迅的散文《从百草图到三味书屋》,这是一篇经典之作,大部分学生在新书发放的第一天就已经拜读过了,如果,还是采用老式的分析法来上课,也许不能唤起学生的阅读兴趣;加之鲁迅的作品往往因为文浅意深而不容易被学生一下子接收,改用“记者答问式”的学法可能更能促使学生走近鲁迅与文本作者进行直接对话,乃至于走进他的心灵。《自由的生存,永远的神往》一课还为“记者采访”的下一环节--走出校门采访一位名人或普通人作了模拟的准备,只要教师调控得当,学生尽力而出,必然会取得“教学相长”的效果。
:
(一)复习《做一回小记者》,了解记者采访的基本要求:
1、2组的同学当记者;3、4组的同学及老师当鲁迅(成年)。
记者:(1)筛选问题;(2)提问要有层次,如由浅入深或由作品内容到作品艺术到作者本身等;(3)组长推选本组平时不爱表现的同学,给他心理鼓动,“勇”当小记者!
鲁迅:(1)精选答案;(2)熟稔课文,有备无患;(3)回答时的神态、举止、内容均要与文化名人鲁迅相仿;(4)先后扮演鲁迅的同学要口径一致,因为你们是“鲁迅”。
:
一、导入新课:
师:在自由的心灵里,世界是美好的,诡秘的,甚至是魅力无穷的。在少年鲁迅的心灵里,百草园是丰茂的,有趣的,甚至是知识充足的。百草园是少年鲁迅的儿童乐园、生物园地、知识宝库;三味书屋也带给他无尽的回忆。让我们用记者采访的形式。走近鲁迅、走进百草园与三味书屋,与鲁迅先生作一次心灵的对话、精神的交流。
二、采访过程:
记:鲁迅先生,很高兴有今天的“一面”之交,更高兴与你进行面对面的交流,据说你把自己的一些回忆性散文收录在《旧事重提》中,为何
又改名为《朝花夕拾》?
鲁:《旧事重提》收录的都是我童年及少年时代生活情形。带露折花,色香自然要好得多,但是我不能够,只能来个“朝花夕拾”。
鲁:10篇,分别是《狗、猫、鼠》、《阿长与》、《二十四孝图》、《五猖会》、《无常》、《从百草园到三味书屋》、《父亲的病》、《琐记》、《藤野先生》、《范爱农》。
记:看来你对童年生活有着深刻的记忆!我想就《从百草园到三味书屋》一篇向你探讨几个问题。
鲁:它曾给我带来丰富的动植物知识、观赏之乐、口舌之娱!
记:前天,我读了《梦回“百草园”,梦回“三味书屋”》,您自己在一开头时也说“其中似乎确凿只有一些野草”。一个只有野草的园子,何足以乐?
鲁:你的问题很有价值,它又勾起我对往事不尽的记忆。是的,百草园中多的是野草,然而,在少年时代,百草园是我唯一的、也是最自由的
嬉戏场所。在此,我饱览了缤纷的菜蔬;品尝过紫红的桑葚,更有探险猎齐心理的满足--那就是按住斑蝥的脊梁让它喷出烟雾;徒手掘出何首乌,考证它是否像人形,是否吃了能使人成仙。这些都是我童年生活的真实写照。但其中也不乏我在成人之后,在面临现实的复杂、沉重、压抑中对过往生活的一种美妙幻想,也许真正的百草园没有我描绘得那么美,可能是“距离产生美感”吧,也或许是人性的本然。总之,“百草园”是我永远神往的精神家园。
鲁:润土父亲在教我捕鸟的同时也教给我实际的技能,并教导我做事要耐心、细心。而我却常常因为操之过急,导致收获很少,不能不说是一种遗憾。
记:做事要耐心细心,也是我们必须培养的品质,谢谢你提醒我们。(笑)然而,百草园如此美丽又富有乐趣,却也有凶险的地方--美女蛇的出没,你怎样看待美女蛇的故事?
鲁:对美女蛇的故事,有许多人认为是一种迷信,而我却是宁肯信其有的。美女蛇当然是不可能遇到的,但像美女蛇这样的`人却是常常会遇到的。“美女蛇”的故事,自然是长妈妈希望“我”对待类似这类凶险之人时,要有防范意识和自我保护意识。“美女蛇的故事”教给我最初的人生经验。
记:后来,你不得不离开百草园了,你当时的心情如何呢?
鲁:我希望大家和我一起来体验当时的心情,朗读第9段。
鲁:大部分不懂,唯有对对子,方能引起我的注意。我从对对子中习得了不少知识,寿先生也因此而比较喜欢我了。
记:对你提问“怪哉”一事,寿先生没有给予回答,你认为是他不会回答,还是不愿意回答?
鲁:应该是不愿意回答吧!过去的教育,都是让我们读经、史、子、集之类被视作是正规的书,对“怪哉”这类旁门左道的问题,先生是拒绝回答的。
记:你刚才提到“教育”,那么你怎样看待你的先生,怎样看待当时的教育制度?
鲁:寿镜吾先生是一个宿儒,对他我还是相当敬重的,在他那儿,我学得了不少书本知识,这为我以后的发展奠定了基础,而且他还很和蔼,这从他有戒尺而不用,有罚跪的规矩而不使上可以看得出来。至于当时的教育制度,它只顾传授书本知识而不考虑儿童身心发展及生活体验,严重束缚了孩童富于想像的头脑和心灵。它用时也束缚了授课老师的手脚,使他们连“怪哉”之类的问题也不敢作答。对当时的教育制度我是不满意的,这从百草园自由生活与三味书屋乏味生活的比照中也是可以看出来的。
记:你说得太好了。我们可否这样理解,《从百草园到三味书屋》就是要来揭示旧的教育制度的弊端,进而表达您儿时对自由生活的向往和追求大自然美好生活的热情?
鲁:可以这样理解。甚至可以说,“百草园”不仅是我儿童时代的游戏场所,更是我成年之后,回首遥望家园时的一种精神寄托。百草园,永远是我一个美妙而神奇的梦想,在那儿,我可以自由的玩耍、嬉戏、猎奇、生存;百草园永远是我心弛神往的精神乐园,在那儿,我可以在游戏中体验到成长与成熟的快感!
记:鲁迅先生,你说得太好了!你诗化的语言让我们看到一个充满灵气而又富有纯美人性的你!那么,从文章本身来看,你最得意,最拿手的
是哪一段,为什么?
鲁:不敢谈得意,许多人都来信询问我对文章第2段的写法,你们的课本上也注明要背诵这一段,我就谈谈这一段吧。(1)从表达上看,描写
与议论相结合;(2)从表现手法上看,我用“不必说……也不必说……
单是……”的句式来描写百草园春、夏、秋三季景色,其中“单是周围的短短的泥墙根一带,就有无限的趣味。”这一议论句,由面而点,打开了百草园的生物世界之门。我还调用了读者的多种感官(视、听、嗅、味、触觉),让大家跟我一起体验童年生活的美好神奇。(3)从语言上看,我尽力调用描写色彩的词汇;句式长短交错;读来音韵
和谐。你们可以尝试着与我一起来朗诵第2段!
四、总结采访得失:
师:感受着同学们的采访热情,我止不住也要做一回记者。请问,经过这次模拟采访,你得到什么启示?
生:好文不厌百回读。用记者采访的形式,使我对课文有了新的认识。如真因为鲁迅保持着天真无邪的童心,才有《一面》中对青年人关怀的热情。
生:生活无处不语文,语文无处不生活。昨天老师让我向同学作采访,写采访稿时,我还一头雾水。现在我知道采访,不仅可以对今人今事,也可穿越时空,与古代人,未来人作心灵的对话!
生:我终于明白了作为记者所必需具备的要求和素质,充分占有被采访者的查关资料;热情、大方、不出怪问。
生:我很遗憾,自己作为“记者”没有勇敢地站出来直接面对“鲁迅”,下次还有这样的机会,我一定会争取的。
师:鲁迅先生在答问中提到“教育”的事,那么你怎样看待现行的教育制度及老师?
生:现在的教育主张我们自主、合作学习,我很喜欢。
生:综合实践活动也成为学校教育的一部分,这很受我们的欢迎。
生:大多数任课老师都能书本结合生活,让我们在课堂中体验生活,在生活中运用知识!
师:同学们感触良多!期望值太大的问题,也许正是现行教育里的一个弊端,作为老师我一定要争取转变观念,合理要求学生,为大家营造
一片宽松、自由、民主的学生环境。
五、收束全文:
师:一座百草园就是一个生物世界;一间三味书屋就一所综合学校;一篇经典名作就是一座知识宝库;一位优秀作家就是一本心灵之书。鲁迅,一个伟大的名字,它是形式与内容、行动与思想、精神与人格的完美结合体!让我们以阅读《从百草园到三味书屋》为切入点,去读更多的有关鲁迅的文章,尝试着从采访长妈妈、寿镜吾、阿累、闰土等一系列人物的过程中,更广更深的了解鲁迅,以习染他高尚的情操,伟大的人格!
数学必修3教案(篇10)
专题八当今世界经济的全球化趋势
通史概要:
当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。
世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。
世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。
我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。
概述欧元产生的影响,培养多角度、多层次理解问题的能力。
(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。
(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。
教学建议:
1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。
2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。
3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。
4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。
(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加APEC会议的资料,多渠道去了解和认识APEC建立的史实及影响。
(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。
重点难点:
重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。
教学建议:
1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。
2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的APEC中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。
3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。
4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和NAFTA,有自身的特点,这些特点适应了APEC各成员国经济发展的状况和经济运行模式。
课标要求:
(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。
(2)了解世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用。
(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。
教学目标:
(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。
(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从GATT到WTO”的过程,围绕世界贸易组织建立的必要性并对中国加入WTO的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。
(3)情感、态度与价值观:通过了解经济全球化与中国加入世界贸易组织带来的机遇与挑战,树立面向世界、积极参与国际合作与竞争、促进世界和平与发展的信念和为我国社会主义现代化建设而奋斗的责任感;通过了解经济区域集团化与世界经济全球化之间的相互关系,认识现实生活中合作
2024高一数学必修一教案(精选5篇)
2024高一数学必修一教案 篇1
一、本节课内容的数学本质
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
二、本节课内容的地位、作用
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
三、学生情况分析
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的'函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。
四、教学目标定位
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备。
通过探究、展示、交流,养成良好的学习品质,增强合作意识。
通过具体问题体会逼近过程,感受精确与近似的相对统一。
五、教学诊断分析
“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。
六、教学方法和特点
本节课采用的是问题驱动、启发探究的教学方法。
通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。
本节课特点主要有以下几方面:
1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。
2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。
以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。
3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。
4、恰当地利用现代信息技术,帮助学生揭示数学本质。
本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel
程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。
七、预期效果分析
以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。
另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。
2024高一数学必修一教案 篇2
一、教学目标
2、 过程与方法目标:通过让学生探 究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语 言之间的相互转化。
3、 情感、态度与价值目标:通过用集合论 的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。
二、教学重点和难点
重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。
难点:从集合的角度理解点、线、面之间的相互关系。
三、教学方法和教学手段
在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给 同学一个直观的展示,然后得出结论。下附学生的学案
四、教学过程
教学环节 教学内容 师生互动 设计意图
课题引入 让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。 学生观察、讨论、总结,教师引导。 提高学生的学习兴趣
新课讲解
基础知识
能力拓展
探索研究 一、构成几何体的基本元素。
点、线、面
二、从集合的角度解释点、线、面、体之间的相互关系。
点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。
三、从运动学的角度解释点、线、面、体之间的相互关系。
1、 点运动成直线和曲线。
2、 直线有两种运动方式:平行移动和绕点转动。
3、 平行移动形成平面和曲面。
4、 绕点转动形成平面和曲面。
5、 注意直线的两种运动方式形成的曲面的区别。
6、 面运动成体。
四、点、线、面、之间的相互位置关系。
1、 点和线的位置关系。
点A
2、 点和面的'位置关系。
3、 直线和直线的位置关系。
4 、 直线和平面的位置关系。
5、 平面和平面的位置关系。 通过对几何体的观察、讨论由学生自己总结。
引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。
通过课件演示及学生的讨论,得出从 运动学的角度发现点、线、面之间的相互关系。
引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。 培养学生的观察能力。
培养学生将所学知识建立相互联系的能力。
让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。
培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。
课堂小结 1、 学习了构成几何体的基本元素。
2、 掌握了点、线、面之间的相互关系。
3、 了解了点、线、面之间的相互的位置关系。 由学生总结归纳。 培养学生总结、归纳、反思的学习习惯。
课后作业 试着画出点、线、面之间的几种位置关系。 学生课后研究完成。 检验学生上课的听课效果及观察能力。
附:1.1.1构成空间几何体的基本元素学案
(一)、基础知识
1、 几何体:________________________________________________________________
2、 长方体:________________________________ ___________________________ _____
3、 长方体的面:____________________________________________________________
4、 长方体的棱: ____________________________________________________________
5、 长方体的顶点:__________________________________________________________
6、 构成几何体的基本元素:__________________________________________________
7、 你能说出构成几何体的 几个基本元素之间的关系吗?
(二)、能力拓展
1、 如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________
2、 在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?
3、 你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________
(三)、探索与研究
1、 构成几何体的基本元素是_________,__________,____________.
2、 点和线能有几种位置关系_________________________你能画图说明吗?
3、 点和平面能有几种位置关系_______________________你能画图说明吗?
4、 直线和直线能有几种位置关系________________________你能画图说明吗?
2024高一数学必修一教案 篇3
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的'判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
2024高一数学必修一教案 篇4
一、说课内容:
苏教版高一年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
设计意图复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
设计意图通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:
(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
设计意图这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
设计意图理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
2024高一数学必修一教案 篇5
一、本节内容在教材中的地位与作用:
《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
二、学情、教法分析:
按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的'直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。
三、教学目标与教学重、难点的制定:
依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:
1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。
在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下:
教学重点:函数的单调性的判断与证明;
教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。
四、教材内容简析:
本节主要内容如下:
(1)单调性的相关定义:一般地,设函数的定义域为I,区间AI:如果对于区间A内的任意两个值,当时都有,那么就说在区间A上是增加(减少)的。此时,A是单调递增(递减)区间。
注:关键词:“区间AI:”、“任意”、“都”。区间AI表明判断函数单调性首先判断函数的定义域,“任意”表明不可以用两个特定的值来确定函数是增函数还是减函数,但是可以用来否定函数是增函数或者否定函数是减函数,“都”表示单调区间中的每一个值无一例外。
如果函数在定义域的某个子集上是增加或减少的,那么就称这个函数在这个子集上具有单调性。如果函数在定义域是增加或减少的,那么就分别称这个函数为增函数或减函数,统称为单调函数。
(2)单调性的判断与证明:
①单调性的判断:图像法、定义法;(注:两个单调区间的“并”不一定是单调区间。)
②单调性的证明步骤归结为五个步骤:取值、作差与变形、判断、结论。