<

趣祝福 · 范文大全 · 梯形面积课件

梯形面积课件精选12篇

时间:2023-07-09 梯形面积课件 梯形课件

或许你需要收藏本页的"梯形面积课件"来防止遗忘。为了做好准备,老师们在开学前应该精心设计教案和课件。完善教案和课件能够提高教师的专业形象。此外,您还可以浏览范文大全栏目的电力实习总结精华6篇

梯形面积课件 篇1

《梯形面积的计算》教学设计

教学目的:

1、运用知识迁移类比规律和“转化”的数学思想,引导学生通过小组合作探索推导出梯形的面积计算公式;并能正确地运用公式解答有关问题;

2、培养学生操作、观察能力以及利用已有知识和经验解决新问题的能力,培养创新意识,渗透“变”与“不变”的辩证唯物主义观点教育。

教学重难点:推导梯形的面积计算公式。

教具、学具准备:多媒体课件、梯形纸片若干、方格纸一张、直尺、剪刀、彩笔。教学过程:

一、设置情境 提出问题

1、复习旧知。

最近我们学习了三角形面积的计算方法,三角形的面积怎样计算?计算公式是怎样推导出来的?

2、情景创设。

某厂家要为幼儿园制作一批桌椅,桌子是梯形桌面(点击出示扫描图)上底是80厘米,下底是120厘米,高70厘米,每张桌子要用多大的木板?

3、讨论问题

① 要求需要多大的木板,就是求什么?(板书梯形的面积)

② 求梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法?

二、独立探索,感悟体验

①请大家拿出课前准备的任意两个完全相同的梯形,试试拼一拼,②学生上台操作,展示拼法。

师:你是用两个什么样的梯形拼成的?(完全相同的**梯形)

③请大家就用这种拼法,在下面再拼一次,边拼边体会是怎样旋转和平移的。

④刚才用两个完全一样的**梯形可以拼成一个平行四边形?是不是所有的梯形都可以拼成呢?(再请不一样的拼,演示)

小结:刚才我们请了三个同学演示了他们拼的过程,有没有发现他们所用的两个梯形有什么共同的特点?(完全相同)

⑤观察拼成的平行四边形,你发现了拼成的平行四边形和梯形间的关系吗? ⑥那你认为梯形的面积应该怎样计算呢?师生归纳出公式

追问:(上底+下底)表示什么?(上底+下底)×高算得是什么?为何要除以2?练习:求梯形面积(p55-1(两个梯形图面积)

三、合作探究,发散验证

1、刚才我们再一次用转化的方法把两个完全一样的梯形拼成了学过的图形,推导出了梯形面积的计算公式,可是如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法验证我们刚才的发现呢?

2、每人在方格纸上画一个任意的梯形,剪下后尝试。小组讨论研究。分组汇报。学生可能讨论出的计算方法有:(1)做对角线,把梯形分割成两个三角形。

(2)从上底的两个顶点做下底的垂线,把梯形分割成一个长方形和两个三角形。(3)从一腰中点做另一腰的平行线,割下的小三角形旋转,拼成一平行四边形。(4)从两腰中点做下底的垂线,分割下的两个小三角形旋转可拼成一个长方形。(5)从上底一顶点做另一腰的平行线,把梯形分割成一个四边形和一个三角形。

(6)从梯形的一个顶点做与一腰中点的的连并延长与底边的延长线相交,将割 下的三角形旋转拼在底的旁边,使其拼成一个三角形。

3、总结:不管采取何种剪拼方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。再次验证了知识之间相互联系

4、抽象概括

与平行四边形和三角形一样梯形面积也可以用字母公式表示,如果用S表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积公式是:S=(a+b)×h ÷2

5、追问:想一想,计算梯形的面积必须要知道哪些条件?和我们刚才的猜想一致吗?

四、应用公式,解决问题

1、算出幼儿园需要的梯形桌面木板的面积了吗?

2、出示例题,解释横截面,学生独立完成,汇报。

3、算出梯形的面积,5小题

五、总结体验,拓展延伸。

1、你会求下列各图形的面积吗?

小明只记得梯形的面积公式了,忘记了求以上图形的公式,可是他却求出了所有的图形的面积,你知道他是怎样算的吗? 我们试一试。

我们也可以说梯形的面积公式是这五种图形面积的通用公式。

2、课堂小结:通过刚才的学习,你有什么收获?

3、判断

(1)梯形面积是平行四边形面积的一半。

(2)两个完全相同的直角梯形可以拼成一个长方形。(3)两个形状一样的梯形一定能拼成一个平行四边形。

4、用篱笆围成一个养鸭场,一面靠墙,另三面围篱笆,共长50米,养鸭场的面积是多少平方米?

梯形面积课件 篇2

一、“学、做、测、”教学模式

1、指导思想

教师的责任不在于教,而在于教学生学。课堂教学的主体是学生,课堂的主要行为是学。

2、教学策略

① 每堂课规定,学生自学、教师导学控制在15分钟以内。

②灵活运用“学、做、测”的教学模式。不同年级,不同学科,不同内容,不同基础,适当调整。该少讲的不多讲,不需要讲的可以不讲。③学生自学前有自学提示,自学后有交流总结,逐渐地形成良好的自学方法和自学习惯。

3、模式解读

①“学”,教师简明扼要地出示学习目标;提出自学要求,进行学前指导;提出思考题,规定自学内容;确定自学时间。

②“做”在自学的基础上,学生进行教学第二部分做一做,通过板演教师巡回发现问题个别指导,板演完毕,进行小结,对学生做中出现的问题,进行通俗有效的重点指导。

③“测”,教师根据教学目标,设计不同层次的题目,让学生根据自己的学情应用所学过的知识有选择的独立解决问题,当堂消化知识,当堂完成作业。

二、《梯形的面积计算》教学设计

教学目标:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用

转化的方法解决实际问题的能力。

教学重点:正确地进行梯形面积的计算。

教学难点:梯形面积公式的推导。

教学准备:投影、小黑板、若干个梯形图片(其中有两个完全一样的。教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、学

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。⑵看一看,观察拼成的平行四边形。

出示小黑板:自学提示

1、你拼成了什么图形,怎样拼的?

2、你发现拼成的平行四边形和梯形之间的关系了吗?

3、拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。

4、想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

2、拓展延伸

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:S=(a + b)h ÷24、学生自学例3

注意事项

三、做

完成课本P81做一做(一人板演)

四、测

1、判断(错误并找出原因)

1)梯形的面积是平行四边形的一半。

2)、梯形面积公式用字母表示是:S=(a+b)×h

3)、两个梯形的高相等,它们的面积就相等。

4)、两个面积相等的梯形可以拼成一个平行四边形。

2、P82第1、2、3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。

梯形面积课件 篇3

一.教学目标

1.在实际情境中,认识计算梯形面积的必要性。

2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

4.通过小组合作学习,培养学生合作学习的能力。

二.教材分析

“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

三.教学设计

(一)复习准备

1.复习旧知,铺垫引导

师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

生:转化成平行四边形。

(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

(点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)

师:同学们对前面的知识掌握的真不错。

(二)新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?

(学生思考片刻可能会回答:可以先转化为学过的图形)

师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

(点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

a。利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

b。把你的方法与小组成员进行交流,共同验证。

C.选择合适的方法交流汇报。

2.自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3.全班汇报交流

师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

(学生边动手演示,边说转化过程,见下图。)

生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

(三)探索、归纳梯形的面积计算公式

师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

生:梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)×高÷2

(教师板书梯形面积计算公式)

师:一个梯形的面积为什么要除以2?

生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:S=(a+b)h÷2

(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

(点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)

(三)联系实际,巩固运用

1.试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

(1)出示篮球场的罚球区图形,请计算出罚球区的.面积。

(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2.练一练第1、2、3题,让学生独立完成。

3.思考题

我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?

(四)课堂小结

通过今天课堂上的学习,谈谈你的收获。

梯形面积课件 篇4

教学内容

小学数学五年级第二单元图形的面积

(一),探索活动

(三)梯形的面积。教学目的

1.知识与技能:能运用梯形面积的计算公式,解决相应的实际问题。

2.过程与方法:在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

3.情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。渗透计算机是学习的有力工具的思想。教学重点 理解并掌握梯形面积的计算公式。

教学难点 经历梯形面积计算公式的推导过程。

教具准备 多媒体课件一套

学具准备 两个完全相同的梯形(一般的、等腰的、直角的均可)卡片、小剪刀。教学过程

一、复习旧知,铺垫引导

师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

生:转化成平行四边形。

(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)师:同学们对前面的知识掌握的真不错。

二、设置情境 提出问题

师:请同学们拿出课前准备好的梯形,边摸边说出它各部分的名称,教师引导。(梯形的上底,下底,两腰,高)

师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?

(学生思考片刻可能会回答:可以先转化为学过的图形)师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

三、自主探究

1、提出小组合作的要求

师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下: a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。b.把你的方法与小组成员进行交流,共同验证。C.选择合适的方法交流汇报。2.自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上前面展示)

3.全班汇报交流

师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

(学生边动手演示,边说转化过程,见下图。)

生2:2.我们小组是把梯形沿一腰中点向对角剪开,再转化成三角形。

生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

四、探索、归纳梯形的面积计算公式

师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

生:梯形的面积是所拼平行四边形面积的一半。生:梯形的面积=(上底+下底)×高÷2(师用课件配合演示),(教师板书梯形面积计算公式)师:一个梯形的面积为什么要除以2 ?

生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。(师用课件配合演示)

师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:S=(a+b)h÷2

五、联系实际,巩固运用 1.试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积。

出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2.练一练:第1、2、3题,让学生独立完成。

3.利用一面围墙围成一块梯形菜地,已知篱笆全长325米,则这块菜地的面积是多少平方米?

4.思考题:一张梯形彩纸,上底5厘米,下底7厘米,高6厘米,要从中剪下一个最大的三角形,剩下的面积是多少平方厘米?

六、课堂回顾,总结收获

成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。

梯形面积课件 篇5

各位评委老师:

大家好!

今天我说课的内容是人教版义务教育课程标准实验教科书数学五年级上册第五单元中“多边形的面积”P88--89《梯形的面积》。下面,我将从教材分析、学情分析、教学目标、教学重难点、教法.学法、教学流程、板书设计及教学反思等八个方面阐述我对本节课的理解。

一、说教材分析

1、课标理念:

课标要求学生在学习梯形的面积时,要在已有认识梯形的底和高的基础上,经历探索梯形面积计算方法的过程,并能运用面积计算公式解决生活中一些简单问题,并在探索图形面积的计算方法中,获得教学探索的经验。

2、单元分析:

本单元教材包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。平行四边形、三角形和梯形面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。(插图)

3、本节分析:

本课是在学生认识了梯形的特征,并掌握了长方形、正方形、平行四边形和三角形面积的计算,并形成一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,让学生在主动参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在教学的再创造过程中实现对新知识的意义构建,解决新问题,获得新发展。

二、说学情分析:

五年级学生,善于独立思考,乐于合作交流,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力,他们已经掌握了梯形的特征和长方形、三角形以及平行四边形面积的计算方法,也学习了图形的旋转平移的方法。这些都为本节课的学习奠定了坚实的基础。

三、说教学目标:

针对上述教材分析及我班学生特点,我制定一下教学目标:

(1)知识目标:通过动手操作活动,引导学生推导梯形面积公式,使学生能够正确地运用公式计算梯形面积。.

(2)能力目标:利用图形的平移和旋转等操作演示,通过合作探索,推导并归纳出公式。

(3)情感态度:培养学生动手操作和逻辑思维能力,同时获得探索问题成功的体验。培养学生的空间观念。

四、说教学重难点:

教学重点:理解梯形面积公式,掌握计算方法。

教学难点:通过图形的转化推导梯形面积公式。

五、说教法、学法:

教学方法:这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要采用引导法、直观演示法、讨论法、合作探究法等方法。

学习方法:本课运用小组合作学习、知识迁移类推等学习方法。

六、说教学流程:

为了实现教学目标,完成新课标赋予的教学任务,我把本课的教学过程分为五个环节:

(一)、第一个环节是:复习旧知、铺垫引导

本节课教学中,我首先出示了课中主题图这一生活情境,让学生感受计算梯形面积的必要性,接着让学生回忆平行四边形,三角形面积公式的推导转化过程:

师:同学们,我们在学习三角形和平行四边形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

让学生通过复习,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础,再提出假设,今天我们要学习梯形的面积计算是否也可以将它转化成我们已经学过的图形来进行梯形面积公式的推导呢?

设计意图:通过这一设计来启发学生运用已学知识大胆提出猜测,激发学生探索新知的欲望,又使学生明确了探索目标与方向。

(二)、第二个环节是:合作学习、探索新知

1、首先让学生拿出准备好的梯形分小组进行画、剪、拼、摆等操作活动,让学生通过讨论,自主探索梯形的面积公式:

2、师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出了梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。

3、有意识地按学生的认知规律一一展示。

4、学生一边展示拼过程,一边介绍方法步骤。

方法一:梯形面积公式的推导方法与三角形面积公式的推导方法相同,运用“拼”的方法,选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形,每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:

梯形的面积=平行四边形的面积÷2

=底×高÷2

=(上底+下底)×高÷2

方法二:选择两个形状相同,大小相等的直角梯形可以拼成一个长方形。

根据长方形的面积计算公式就可以推导出梯形的面积计算公式:

梯形的面积=长方形的面积÷2

=长×宽÷2

=(上底+下底)×高÷2

方法三:把一个梯形分割两个三角形

方法四:把一个梯形剪成两个梯形再拼成一个平行四边形。

5、最后教师针对学生的汇报进行归纳总结得出梯形的面积计算公式为上底与下底之和乘高除以二这一结论,这是本节课的重点及难点。

设计意图:在整个汇报展示过程中,教师把学生也当作教学资源,不但为他们提供一个展示不同方法和想法的平台,还通过实际操作、互动交流。启迪学生深思,引发争论,并碰撞思维火花,让学生在合作交流达到意义的理解和方法的掌握。从而获取这一知识,弄清知识的来龙去脉,既培养了学生能力,又让学生感受到了成功的喜悦。

(三)、第三个环节是:看书质疑、自主学习

1、自学字母公式

师:请同学们把书翻开P88,自学书中的内容。

用s表示梯形的面积、用a表示梯形的上底、用b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。

师:同学们刚才看书自学到什么呢?

2、出示例题:我国三峡水电站大坝的横截面的一部分是梯形,求它的面积:学生读题、分析,独立完成。

设计意图:这一部分是通过自学字母表达式、完成例3,培养学生的自学、看书、归纳能力;

(四)、第四个环节是:应用知识、巩固提高

创关检测:课本做一做、练习十七精选习题等

设计意图:通过不同的练习,训练学生,巩固拓展已学知识,让学生再次体验学习,认识到梯形面积公式在生活中的运用及重要性,感悟数学与生活的联系,最后让学生总结概括本节课所学内容,既培养了学生的语言表达、归纳概括的能力,还关注了学生的情感体验。

(五)、第五个环节是:全课总结、畅谈收获

教师通过提问:“今天你有什么收获?”学生总结本课。

设计意图:让学生回忆所学知识的内容,并帮助学生加以梳理,促进学生对梯形面积计算方法的认识,培养学生的数学思维能力。最后鼓励学生用数学的眼光观察生活,用数学的头脑思考问题。

七、说板书设计:

梯形的面积

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

设计意图:这样设计板书,简洁明了,突出了重点,便于学生的识记与运用。

八、说教学反思:

学生通过回顾本堂课的收获,给学生提供了自我感悟、自我评价的时间与空间,有利于培养学生的反思意识。使学生感受到通过努力而获得成功的喜悦,体验到数学的在生活中的实用性。从而使学生的情感、态度和价值观得到了提高。

梯形面积课件 篇6

教学内容:

认识梯形

设计理念:

关注学生在数学活动中所表现出来的情感与态度,关注学生的需要,帮助学生认识自我,建立信心。数学活动是建立在学生的认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。

教学目标:

1、观察梯形的特点,概括归纳出定义,并且知道各部分名称;通过动手操作找到等腰梯形的特征;并对所学四边形进行建构,能用集合图表示它们的关系。

2、培养学生的观察、归纳概括、动手操作实践能力和创新能力。

3、通过动手操作、讨论、归纳等活动获取新知,对知识进行建构,使其体验成功的喜悦。

教学重点:

经历探究的过程,获取新知,亲身经历知识的再现过程。

教学过程:

一、从经验出发导入新课。

通过收集展示学生课前所画的各种四边形,并结合生活实例引入课题。

二、从需要出发合作探究。

1.了解学生的需要

师:凭前面学习长方形、平行四边形的经验,你们想从哪些方面认识梯形呢?

预设:生可能从以下方面回答:

(1)定义

(2)各部分名称

(3)特性

(4)特征

师:那我们就按自己的想法先研究什么样的图形是梯形。

(学生已经学过平行四边形,对研究方法已有一定的掌握,这样教学以关注学生需求,教师可就着学生的思路进行教学,是教师跟着学生走,而不是教师拽着学生走,学生跟着教师跑。)

2.合作探究梯形的定义

学生选择老师提供的研究材料(一组梯形的题卡、量角器、直尺等),先独立思考,再以小组汇总意见讨论。(学生以组讨论,教师巡视,引导学生参与到活动中去。)

组织小组汇报交流,预设:小组可能从以下几个方面回答:

(1)通过数一数、量一量等方法得知有四个角、四条边、四个顶点、一组对边平行,另一组对边不平行的图形是梯形。

处理应变:引导学生把四个角、四条边、四个顶点等特点归纳为四边形

(2)有一组对边平行,另一组对边不平行的四边形叫梯形。

处理应变:引导学生把两句话归为一句话。

(3)只有一组对边平行的四边形叫梯形。

处理应变:提问:只有起什么作用。

(在这个教学环节中,教师以合作者、参与者的角色与学生一起研究讨论,学生由于有前面学习平行四边形的基础,自己利用准备的工具和材料去研究梯形的特征,教师留给学生充分的时间和空间,让他们先自主探究,再合作交流完成学习任务。)

3.了解梯形各部分的名称

(1)学生自学课本了解梯形各部分名称,同桌拿起刚才剪的梯形指指各部分,并标出各部分的名称。

(2)汇报交流,重点说说梯形的高在哪里。

(3)学生把剪的梯形(标出各部分名称的)贴在黑板上展示。

4.观察发现等腰梯形的特征

(1)学生拿出老师给准备的等腰梯形,以小组通过动手操作,实践找一找这样的梯形特殊在哪儿。

(2)汇报交流,互相补充,达成共识。

可能出现的情况:a两条腰相等

b上面底角、下面底角分别相等

5.知识建构

师:现在,我们认识的四边形家族中又多了一个成员,你们能把这几位成员间的关系想办法清楚地表示出来吗?

学生分类整理学过的四边形,然后展示交流整理结果,组织互评,激励学生用不同的形式整理。

学生可能用集合图表示或其他的方法表示。

(通过对所学过的四边形进行分类整理,学生系统整理掌握的知识。)

三、从兴趣出发实践应用。

1.玩一玩。

你能把等腰梯形只剪一刀就拼成一个长方形或平行四边形吗?

(学生在学中玩,玩中学,激发浓厚的学习兴趣,也体现了玩数学的教学理念,这样可以调动学生的积极性,学生主动参与到数学活动中去。)

2.找一找,数一数。在下面的图形中找我们学过的图形,数数分别有几个?

四、你今天有什么收获吗?

五、作业

教学反思:

小学数学课程标准中明确指出:教师在教学中应当是组织者、参与者、引导者。凡学生能独立思考的,教师绝不要提示或暗示,凡学生能自己得出的,教师绝不要代替。

在教学设计中,注重了对学生创新能力与实践能力的培养。为学生提供典型的感性材料,有目的地创设学生活动的空间,学生充分利用学具看一看,剪一剪,折一折,量一量,拼一拼,说一说等操作活动,在猜想、争论、验证、互相补充中汇报交流、亲自参与、亲身感知、再现知识发展的过程,形成师生之间、学生之间的多向交流,使学生发展了自己的数学思想,学会进行数学交流,倾听别人的想法,并且注重了学生对四边形的建构,使其理清关系、形成系统、完整的认识。力争始终把学生作为学习的主人,为学生创设了和谐、民主的学习氛围。

梯形面积课件 篇7

《梯形的面积》教学设计

教学目标:

1.理解并掌握梯形的面积公式,能正确地应用公式计算梯形的面积。

2.通过拼一拼、剪一剪等动手操作活动,经历梯形面积计算公式的探索、推导过程,感受转化的数学思想,进一步培养学生的迁移类推能力,观察、分析、概括、推理和解决实际问题的能力。

3.在不断地尝试中产生求知欲,体验数学活动充满着探索与创造,逐步形成探究意识和合作意识。

教学重点:运用转化思想推导梯形面积的计算公式,理解并掌握梯形的面积计算公式,并运用梯形面积计算公式解决问题。

教学难点:理解梯形面积计算公式的推导过程。教学流程:

一、情境导入,提出问题。

请同学们看这幅图片,汽车玻璃是什么形状的(课件出示课本88页汽车图)?前2堂课,我们学习过了,平行四边形、三角形的面积。今天我们继续来学习梯形的面积。板书课题:梯形的面积

设计意图:在实际生活中,导入梯形的面积。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。

二、回顾旧知,分析问题

师:面对梯形的面积这样一个新的知识,你打算怎样来求? 请学生说一说,从而唤起学生对旧知的回顾。

课件演示:平行四边形和三角形面积的推导方法及过程。师:请你们每个人都想一想,你打算把梯形转化成什么图形?

让学生明确:探究梯形面积计算方法的关键是要将梯形转化成已经学过的图形。设计意图:通过对平行四边形与三角形面积计算公式推导过程的回顾,为学生推导梯形面积计算公式作了铺垫。通过让学生猜想梯形的转化,发现解决问题的关键,为接下来的小组合作指明了方向。

(一)明确任务,提出要求

1、做一做:用剪、拼等方法将梯形转化成已学过的图形。

2、想一想:转化后的图形与原来的梯形有什么关系?

3、议一议:怎样推导梯形面积的计算公式?

(二)小组合作,动手操作

小组合作,利用手中学具,进行操作。师关注课中学情。

(三)组内交流,推导公式 让学生在小组里议一议,怎样推导梯形面积的计算公式?通过讨论交流后,学生得到一定的结论。

(四)全班交流,展示成果 小组一: 1.我们小组发现必须用两个完全一样的梯形才能拼成一个平行四边形。首先先按住梯形右下角的顶点,再使一个梯形逆时针旋转180度,使梯形上下底成一条直线,然后把第一个梯形向左边沿着第二个梯形的右边平称移动,直到成一个平行四边形为止。

2、推导过程:

两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以,梯形的面积=(上底+下底)×高÷2 小组二:

1.我们小组发现可以将梯形切割成两个小三角形,同样可以推导出梯形的面积公式。

2.推导过程:

梯形的面积=三角形1的面积+三角形2的面积

=梯形上底×高÷2+梯形下底×高÷

2=(梯形上底+梯形下底)×高÷2

小组三:

1.我们小组还发现可以把梯形切成一个平行四边形和一个三角形。

2.推导过程:

梯形的面积=平行四边形面积+三角形面积

=平行四边形的底×高+三角形的底×高÷2 =(平行四边形的底+三角形的底÷2)×高

=(平行四边形的底+三角形的底÷2)×高×2÷2 =(平行四边形的底×2+三角形的底÷2×2)×高÷2

=(平行四边形的底+平行四边形的底+三角形的底)×高÷2

因为 梯形的上底=平行四边形的底

梯形的下底=平行四边形的底+三角形的底 所以梯形的面积=(上底+下底)×高÷2

小组四:推导过程:

从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。平行四边形的底等于(梯形的上底+梯形的下底)平行四边形的高等于梯形的高÷2

梯形的面积等于拼成的平行四边形的面积

所以 梯形的面积=(上底 +下底)×高÷2

只要学生能把意思基本说出来,我都会给予肯定,并且通过小组之间的交流、互补,使结论更加完善。

(五)归纳公式,字母表示

学生自己归纳出梯形面积的计算公式: 梯形的面积=(上底+下底)×高÷2 如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示: S=(a+b)h÷2 设计意图:由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。

四、应用公式、巩固练习

1、教学例3

2、练习

五、课堂小测、检验成果

梯形面积课件 篇8

九年义务教育六年制小学数学五年级上册

《梯形面积的计算》教学设计

教学目标:

1、运用图形的旋转、平移的数学转换思路理解和掌握梯形面积公式的推导,提高思维水平。

2、引导学生在参与探索的过程中,发现并掌握梯形面积的计算方法,能灵活地运用梯形面积公式解决相关的数学问题。

3、进一步体会利用转化的方法解决几何知识中的问题,培养学生观察、操作、比较、推理等逻辑思维能力与初步假设、实验、验证等科学探究的能力。

4、体验创新的乐趣,使每个学生都获得个性化的发展。教学重点:梯形面积的计算

教学难点:梯形面积公式的推导 教具准备:课件、梯形卡片

学具准备:剪刀、直尺、卡片、一、创设情境,导入新课

猜图形:三角形、平行四边形、梯形

电脑演示:

1、复习三角形面积计算公式的推导过程

2、复习近平行四边形面积计算公式的推导过程

3、板书:梯形面积公式的计算

二、合作交流 探求新知

1、梯形面积公式的推导

(1)如何推导梯形面积计算的公式?让学生自己谈初步设想。

(2)分组讨论、操作:学生借助手头的学具、工具运用已学的经验方法进行尝试。(3)归纳学生的推导过程,课件演示拼合法、割补法、分解法、数方格法推导梯形面积计算公式的过程。

(4)归纳梯形面积计算的公式,引出它的字母公式。

2、公式应用:(1)例题

例题:一条新挖的渠道,横截面是梯形。渠口宽2.8米, 渠底宽1.4米,渠深2米。它的横截面的面积是多少平方米?

(2)课件出示水渠横截面图、师生共同解答

2.8米1.4米()2.81.424.2224.2(平方米)2答:它的横截面的面积是4.2平方米。

三、师生互动、巩固新知

1、判断:

①只有一组对边平行的四边形是梯形()

②面积相等的两个梯形一定可以拼成一个平行四边形()③S梯形=上底+下底×高÷2()

2、算一算下列梯形的面积

1厘米2厘米3.5厘米

3、找一找生活中的梯形并编出符合实际的应用题

(顶层根数+底层根数)层数 2

四、拓展延伸、深化提高,运用学具摆花园设计图,学生自由组合,分组设计。

我当设计师我校决定在操场东侧建一个面积为20平方米的圆形花坛,内设一些形状各异的小型梯形花池,便于种植不同的花卉。请你来设计,你认为怎样设计合理呢?请你用学具摆出设计图。你能否预算出每一小花池的面积?

五、归纳总结提出要求。

梯形面积课件 篇9

《梯形面积公式的推导》微课教学设计

阳平镇第二九年制学校

安小宁

一、教学目标:

1.知识与技能:运用“转化”的方法引导学生学习推导梯形面积的计算公式。2.过程与方法:使学生进一步体会转化方法的价值,发展空间观念和初步的推理能力。3.情感态度与价值观:让学生在探索活动中获得成功的体验,进一步培养学习兴趣。

二、教学重点:引导学生运用“转化”的方法推导梯形面积的计算公式。

三、教学难点:对梯形面积=(上底+下底)×高÷2公式中“÷2”的理解。

四、教学准备:多媒体课件

五、教学过程:

(一)、回忆平行四边形、三角形面积计算公式的推导步骤: 1.转化;2.找新旧图形之间的关系;3.推导计算公式

(二)讲解推导方法

1、拼摆法

教师利用课件呈现用两个完全一样的普通梯形拼摆成一个平行四边形,讲解推导出梯形的面积计算公式。

2、切割法,教师利用课件呈现将一个普通梯形切割成两个三角形,讲解推导出梯形的面积计算公式。

(三)、公式形式

梯形面积=(上底+下底)×高÷2 用字母表示:S梯 =(a + b)h÷2

(四)小结

你想知道还有什么方法可以推导出梯形的面积计算公式吗?欢迎您下次继续观看我的微课。谢谢您今天的耐心地聆听,再见!

梯形面积课件 篇10

教学目标:1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:理解、掌握梯形面积的计算公式。

教学难点:理解梯形面积公式的推导过程。

教学过程:

1.导入新课

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

2.新课展开

第一层次,推导公式

(1)操作学具

①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

④教师带领学生共同操作:梯形(重叠)旋转平移平形四边形。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。

①提问:想一想平行四边形面积公式是怎样推导得到的?

②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

(2)引导操作。

①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

②学生动手操作、探究、讨论,教师作适当指导。

(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。

第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。

3.巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

4.全课小结。(略)

梯形面积课件 篇11

教材分析

1.这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。

2.本节课的核心内容是使学生运用转化成已学过图形的方法去推导梯形面积计算公式。只有学好本节课,才能真正使学生理解和掌握梯形的面积的计算方法,从而应用于生活实践中。

学情分析

1.本班学生喜欢动手操作、合作交流。

2.学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,在此基础上放手让学生自己去做。

3.梯形面积计算公式推导有多种方法,教材显示了三种方法。第一种方法比较容易推导和理解,第二和第三种方法因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。

教学目标

1.知识与技能:

使学生在探索活动中深刻体验和感悟梯形面积计算公式的推导过程。

2.过程与方法:

通过动手操作,观察,比较,发展学生的空间观念,在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3.情感态度与价值观:

激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

教学重点和难点

教学重点:

理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。

教学难点:

运用不同的方法推导出梯形的面积公式。

梯形面积课件 篇12

教学目标:

1、使学生经历猜想、验证、发现的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。

2、培养学生观察、推理、归纳能力,体会转化思想的价值。

3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

教学重点、难点:探索并掌握梯形的面积计算方法。

教学准备:教师准备多媒体课件一套,学生剪下6个梯形。

教学过程:

一、认知准备:知识、策略,双管齐下

谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是(转化)

出示梯形图,

提问:这是什么图形?

关于梯形,你已经知道了些什么?

那么,关于梯形,你还想知道些什么?

提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)

组织班内交流,根据学生回答相机板书。(板书:梯形转化成旧图形?)

[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,迁移是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼转化思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]

二、探索公式:猜想、验证、发现

1、动手操作,尝试转化

提问:你们是怎么想到用转化的方法来寻找梯形的面积呢?

师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)

小组活动:挑选梯形尝试转化。

交流,演示,多媒体出示拼成的三种情况。

明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。

2、讨论关系

师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?

出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。

[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对转化思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(剪移拼和转移拼)和观察的经验(从底、高、面积三方面找关系)。因此,今天的转化梯形和寻找关系早已成了学生跳一跳可以摘到的果子!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]

3、应用关系,体验方法

在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。

师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?

学生任选一个梯形独立求出它的面积。

交流汇报:

(6+10)42

(3+7)32

(3+6)62

谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10))再乘上4呢?

提问:我明白了,这里算的是拼成平行四边形的面积(板书)

那为什么还要除以2呀?

4、想象延伸,发现方法

出示独立的梯形(标有数据)

提问:你能求出这个梯形的面积吗?

学生在草稿本上写下算式。

提问:(3+5)4算的是什么?

你能想象出拼成的平行四边形的样子吗?用手书空画一画。

为什么要除以2?

归纳:现在你知道该怎样计算梯形的面积了吗?

根据学生回答板书:发现(上底+下底)高2

[设计意图:一般的教学,在找出拼成平行四边形和梯形的关系后,就利用这3条关系通过适当的板书顺理成章地推导梯形的面积公式了。但事实是,这看似顺理成章的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了等量代换的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉晕晕乎乎就得出了公式,对推理的过程仅停留在几句顺口溜的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了计算一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就瓜熟蒂落了。]

5、回顾过程,感受策略

师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:

三、应用公式:紧扣主线,不拘一格,技能与发散并重

1、直接应用,熟练公式

学生独立完成练一练第2题。

2、活用公式,体会梯形公式的实质

(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。

(2)练一练第1题

3、应用公式解决生活中的实际问题

完成试一试。

四、全课总结

师:今天你有什么收获?

小编推荐

梯形的面积课件模板


梯形的面积课件【篇1】

1.在实际情境中,认识计算梯形面积的必要性。

2.在自主探索活动中,经历推导梯形面积公式的过程。

3.能运用梯形面积的计算公式,解决相应的实际问题。

尺子、两个完全相同的梯形纸片、ppt课件。

一、创设情境,引出问题。

1.出示堤坝横截面,感受求梯形面积的必要性。

预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。

二、自主探索,解决问题。

1.把梯形转化成学过的图形,并比较转化前后图形的面积。

(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

发现:一个梯形的面积是拼成的平行四边形面积的'一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

预设二:可以把梯形通过“割补”转化成一个平行四边形。

发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

2.怎样计算梯形的面积?

(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

(2)用字母表示梯形面积公式“S=(a+b)×h÷2”

(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”

3.师生小结。

三、练习应用,巩固提升。

1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

3.先测量,再计算下列图形的面积,并与同伴交流。

四、全课总结,强化延伸。

这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

梯形的面积课件【篇2】

一、说教材

(一)内容分析:

小学数学教材中关于几何初步知识的安排特点是:梯形的认识,清楚了梯形的特征及底和高的概念。而本册教材中先安排了平行四边形的面积计算、三角形面积的计算的基础上,再安排学习“梯形面积的计算”。所以要使学生理解掌握好梯形面积的计算公式,必须以平行四边形的面积、三角形的面积、梯形的底和高为基础,运用迁移和同化理论,使梯形面积的计算公式这一新知识,纳入到原有的认知结构之中。

(基于以上认识,按照大纲要求,我确定了以下的教学目标)

(二)教学目标:

1、通过学具的实际操作,学会用割补、拼凑的实验方法,运用学过的面积公式推导梯形的面积公式,并能运用梯形的面积公式解决简单的实际问题。

2、通过操作、观察、比较,渗透旋转、平移、转化的数学思想方法,培养学生的分析、综合、抽象和概括能力。

(三)教学重点:

发现、理解梯形的`面积公式,并能正确运用。

(五)教学难点:

理解梯形面积公式的推导及推导过程。

教具:自制的课件,硬纸板做的平行四边形、梯形几个,剪刀。

学具:硬纸板做的梯形几个,剪刀,三角板,直尺。

为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,运用多媒体辅助教学,变静为动,融声、形、色为一体,为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

二、说教法

(根据以上的教学目标,教学重点和难点,我准备采用以下的教学方法进行教学)

1.发展迁移原则。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。

梯形的面积课件【篇3】

五年级数学《梯形面积》教案

武兴佳

教学目标:

1.知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。

2.过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。

3.情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。教学重点:正确地进行梯形面积的计算。

教学难点:梯形面积公式的推导。

教学准备:投影、学生准备不同种类的梯形(包括直角梯形、等腰梯形和普通梯形;其中三个组各准备一种,剩下三个组各准备完全相同的两个)

教学过程:

一、导入

1.回忆平行四边形和三角形面积公式的推导(课件出示图找学生看图描述推导过程)

2.请同学们看一些生活中的梯形你们认识它吗?(课件出示)请学生介绍梯形(课件出示梯形示意图)

今天我们就来学习梯形的面积,板书课题:梯形的面积。

二、明确学习目标

推导梯形面积计算公式;利用公式计算梯形面积(课件)

三、指导学生自主学习

1.推导梯形面积计算公式

引导:学习习近平行四边形和三角形面积,采用割补拼摆的方法转化成已学过的图形,再利用已学过的图形推导出面积公式,现在推导梯形的面积公式我们用什么办法呢? 小组活动一:下面请各组的同学利用你们手中的梯形转化成已学过的图形,并回答以下问题:转化为什么图形?怎样转化?(课件出示)

一组:一个等腰大梯形 二组:一个普通梯形 三组:一个直角梯形

四组:两个完全相同的等腰梯形{积木拼成的} 五组:两个完全相同 的直角梯形{积木拼的} 六组:两个完全相同的普通梯形{积木的} 各组汇报

公式推导:同学可真聪明,想出了这么多好办法 我们先用第六种转化方法来试着推导梯形的面积公式。

小组活动二: 请学生思考回答以下问题:

(1)拼成的图形的底与梯形的上下底有什么关系?(2)拼成的图形的高与梯形的高有什么关系?(3)梯形的面积与拼成的图形的面积有什么关系?

(4)根据拼成图形的面积公式怎样求梯形的面积?(课件出示)

小组交流一下吧,把结论结论写下来平行四边形的底=平行四边形的高=平行四边形的面积= 梯形的面积= 各组交流汇报归纳总结梯形的面积计算方法(课件出示)

一个梯形的面积=(上底+下底)*高÷2 为什么要除2呢?

2.用字母表示梯形面积公式

同学们 如用a表示梯形上底,b表示下底,h表示高。S表示面积,谁能用字母表示出梯形的面积公式? 指名说,板书 S=(a+b)*h ÷2 { 其实利用其它几种转化方法也可以推出梯形的面积公式,小组合作推导,全班交流} 3.应用

出示例3(课件)它的横截面是梯形,(解释横截面)你能求出它的面积吗?学生试做,二生板书 集体订正时,让学生评价重在理顺学生解题思路 4.课堂练习:

四、达标测评 计算下面各梯形的面积(注意小组长汇报答案,学生自己检查改正,教师可抽查)

五、反馈总结 学生谈收获组内互评,这节课你最想表扬谁。为什么?)

六、板书设计

梯形的面积

梯形的面积=(上底+下底)*高÷2 S=(a+b)*h ÷2 S=(a+b)*h ÷2 =

梯形的面积课件【篇4】

1.使学生在理解的基础上探索并掌握梯面积计算公式的推导过程,能利用公式求梯形的面积。

2.掌握转化的思想和方法,进一步明白事物之间是相互联系,可以转化的。

一、复习欣赏、引入新课。

师:这就是我们生活中的梯形。你能说出它各部分的名称吗?请你边说边用你的小手指一指.你还想知道什么?(出示课件)

师:大家回忆一下,三角形的面积计算公式是什么?三角形的面积计算公式是怎么推导出来的?(ppt演示)

生:用两个完全一样的三角形拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形的高,三角形的面积是平行四边形面积的一半。沿三角形两边的中点剪开后拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形高的一半,所以三角形的面积是底乘高除以2。师:通过剪拼转化成我们学过的图形,找到他们之间的联系在推导。

师:今天我们继续用转化的方法学习梯形的面积。(板书课题:梯形的面积)

师:如果用a、b、h分别表示梯形的上底、下底与高,用s表示梯形的面积,梯形的面积计算公式还可以怎么表示?

【设计意图】本环就展开想象,在兴趣盎然的状态中打开了思维,培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力,初步感知解决问题的途径和方法.

二、提供材料、动手操作、公式推导。

师:谁愿意猜一猜梯形面积的计算公式可能是怎样推导出来的?

师:同学们对梯形面积的计算公式推导作了大胆的猜想,但光有猜想是不够的,我们还要进行探索研究,通过事实来说明。

师:刚才同学们提到用两个完全一样的梯形拼成平行四边形推导,但老师今天只准备一个梯形怎么办?(课件出示图一)

师:请先想象一下,然后拿出材料画一画,再推导面积公式(学生研究,然后汇报并白板操作)生:两个完全一样的梯形拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,梯形的面积是平行四边形面积的一半。

师:“(上底+下底)×高”表示什么?求梯形的面积为什么还要除以2?

生:(上底+下底)×高求的是平行四边形的面积,用两个完全一样的梯形拼成平行四边形,除以2求的是梯形的面积。

师:通过刚才的学习,用两个完全相同的梯形拼成一个平行四边形确定能推导出梯形的面积计算公式,但是也有同学猜想用一个梯形也能转化成平行四边形、三角形、长方形来推导,你们觉得可以吗?

(2)用一个梯形推导梯形面积计算公式(学生再次研究,然后汇报并白板操作)

师:想办法把一个梯形剪或拼成平行四边形或三角形,再推导出面积公式。

生1:我们沿着梯形两腰中点的连线将梯形剪开(白板操作)转化成一个平行四边形。平行四边形的底等于梯形上底与下底的和,平行四边形的高只有梯形高的一半,(上底+下底)×高÷2,求出的是这个平行四边形的面积,也就是梯形的面积。所以梯形的面积=(上底+下底)×高÷2。

师:上底与下底的和表示什么?高÷2又表示什么?

生:上底与下底的和表示平形四边形的底,高÷2表示平行四边形的高。

生2:我们沿着梯形一个顶点和一条腰的中点分割下来,把它转化成三角形。三角形的底等于梯形的上底与下底的和,梯形的高等于三角形的高。所以梯形的面积=(上底+下底)×高÷2。(学生白板操作)师:你们是沿着腰上的任意一点进行分割的?

生:必须要沿着梯形一腰的中点与顶点的连线进行分割,剪下来才能拼成一个三角形。

生3:我们把梯形分割成两个三角形,方格纸中读出每个三角形的底和高,两个三角形面积和就是梯形的面积,再在方格纸中读出梯形上底,下底,高,从而推出梯形面积公式。

生4>我们把一个梯形分割成一个平行四边形和一个三角形进行推导,也能推出梯形面积公式。

师:刚才同学们用了不同的方法推导出梯形的面积公式,这说明同学们很会思考,其实推导梯形的面积公式还有其他方法,我们还可以在课后继续研究。

【设计意图】让学生动手操作在实验中不断发现问题,在同伴交流中拓展自己的思维,哦不满足于一种方法的公式推导。展示多种方法,开拓学生的思维,沟通多种方法之间的联系和区别。

1.师:有了梯形面积计算公式,我们能不能计算这个梯形的面积?想办法计算出这个梯形的面积?

(学生白板工具栏中数学选直尺量出梯形的上底4.7厘米、下底13.5厘米、高8.5厘米,代入梯形面积计算公式计算出梯形的面积。)

2.师:梯形在我们日常生活中用途很广泛,这是我国最大的三峡水电站,

我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

【设计意图】本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。

四、课堂总结、畅谈收获。

本节课你学到了哪些知识?你有什么收获?(引导学生从知识和方法两方面进行总结)【设计意图】这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

教学反思:

是在学生学习了平行四边形和三角形面积计算的基础上进行学习的。多数学生学习了平行四边形和三角形面积计算之后,会通过各种不同的渠道获取梯形面积的计算公式,但很少有学生会思考梯形面积计算公式是怎样推导出来的,学生经历了平行四边形和三角形的面积公式的推导过程的学习后,已经掌握了要把梯形转化为已知学过的图形进行推导。那么.用什么材料和方法引导学生进行探索呢?

新课表的核心理念是为了每一个学生的发展,但我们有多少时间是真正站在学生发展的角度去落实课堂教学呢?在我们的思维习惯中,往往会从整个数学知识体系去考虑教学,却很少从孩子发展的角度思考。学生已经具备了要把梯形转化为学过的图形进行推导的经验,是否就可以完全放手让学生应用已有的知识,经验主动学习新知识,从而学会学习呢?真正落实到课堂上,却并非易事。所以我把梯形的面积公式推导过程分为两个层次组织学生进行学习,先引导学生用两个完全相同的梯形进行推导,让全班所有的学生都掌握这种推导方法,再引导学生用一个梯形通过割补、分割等方法,把梯形转化成平行四边形、三角形等进行推导,根据推导方法的难易程度,在学习组织上安排了二人合作的形式进行这样的组织教学,层次清楚,每个环节目标明确,让每个学生更深刻地体验了转化的数学思想方法,数学思维能力得到提升。

在平时的动手操作课中,多数教师都觉得很麻烦,主要原因是制作学习材料繁琐,课堂教学调

控比较困难,很容易造成操作的低效现象,为追求学习材料的简洁,我没有制作一些梯形的纸片让学生学习研究,而且把纸片拼摆改成让学生自己画一画,同时考虑到学生画图是用尺子量,误差太大,速度很慢等缺点。采用方格图帮助学生理解,排出一些不必要的干扰因素,这样的学具准备一方面很方便,更重要的是让学生把研究的想法画出来,逼迫学生先进行想象,比直接让学生拼摆更具有挑战性,更有利于发展学生的空间观念。

推导梯形的面积公式主要不是让学生简单地拼一拼、摆一摆或剪一剪,而是让学生通过这样的动手操作推导出梯形的面积公式,培养学生的空间观念。本课教学让学生先想象,然后把拼摆过程画下来,画的过程就是学生想象的过程,发展学生的空间观念。尤其把一个梯形转化成平行四边形、三角形要求更高,这些转化过程必须经历学生的空间想象,白板的应用,让学生观察梯形的变化,即发展了学生的空间观念,又能很好地将梯形的面积公式与三角形、平行四边形的面积公式沟通起来,让学生感受到数学知识之间的内在联系,化抽象为具体,让学生理解的更深刻。

梯形的面积课件【篇5】

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的'面积,可以怎样转化呢?下面我们就来实践操作一下吧。

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形的面积课件【篇6】

教学内容:p.21练习四

教学目标:

1,使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.

2,培养灵活利用公式解决实际问题的能力.

3,培养学生良好的合作探究意识.

教学重点:进一步掌握梯形面积的概念,能较熟练掌握梯形面积的计算方法.

教学过程:

一,画图(图:一直角)

问:你看到什么两条边上分别标上长度:4厘米,2厘米

你能联想到什么图形面积是多少

(1)长方形,长是4厘米,宽是2厘米.面积:42=8平方厘米

(2)三角形,底4厘米,高2厘米,面积:422=4平方厘米

(3)梯形,补充算式(4+3)22,指名画完该图形.

关注细节:(1)在计算时,最后的单位名称不要漏写

(2)画图时,要把关键长度的数据标出来.

(3)题目中,最后问题带的要写答句.

二,检查预习作业:

1,看图计算梯形的面积.要让学生明确互相平行的两条边分别为上底和下底,并不是上面的边和下面的边;确定了上底和下底之后再确定高.

2,学生有困难的题:用58米长的篱笆,在靠墙的地方围一块菜地(图略),这块菜地的面积是多少平方米

先指名说说梯形的面积,师板书.

对照公式,找已知条件和所缺条件.

明确:还缺上底和下底的和,通常可以用上底加下底,但这题中要用三条边的长度减去高.

算式:(58-10)102=240平方米

三,完成书上的练习四:

1,用两个完全一样的梯形拼成一个平行四边形.已知每个梯形的面积是24平方分米,拼成的三边形的面积是多少平方分米

指名读题,比画该题.学生列式交流.

2,下面图中哪几个梯形的面积相等为什么

观察,问:这些梯形有什么共同点(高相等)

利用这个特点,你觉得可以怎么找面积相等的梯形为什么

(方法一:分别算出四个梯形的面积.

方法二:只要看上底与下底的和是否相等.)

学生数一数,算一算,交流最后结果.

3,量出下面每个梯形的上底,下底和高,算出它们的面积.

学生独立完成后交流.

4,银苏号滑翔机模型的尾翼是由两个完全相同的梯形组成的,它的面积是多少

观察图后说说自己准备怎么算

交流方法:方法一,梯形面积乘2.方法二,移动后得到一个平行四边形,算平行四边形的面积.

5,第5题,学生读题后解决.讲评时要注意(1)计算方法的指导;(2)单位的转换.

6,第6题,学生独立完成并校对.

梯形的面积课件【篇7】

教学目标:

(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教学过程:

一、复习旧知

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形下载)

二、设疑引入

教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?

板书课题:梯形面积的计算

三、指导探索

第一部分:梯形面积公式的推导。

1.小组合作推导公式。

教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式

提纲:

2.(演示课件:拼摆梯形下载)

电脑演示转化推导的全过程。

3.由学生自己说明梯形面积=(上底+下底)高2的道理。

4.概括总结、归纳公式。

提问:(1)(上底+下底)高求的是什么?

(2)为什么要除以2?

板书:梯形面积=(上底+下底)高2

第二部分,应用公式计算。

1.出示例1、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

2.提问:已知什么?求什么?怎样解答?

3、列式解答

(2.8+1.4)1.22

=4.21.22

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

四、巩固练习

1、计算下面梯形的面积。

2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。

3.下面是一座水电站拦河坝的横截面图,求它的面积。

五、质疑总结。

1.师生共同回忆这节课所学习的内容。

提问:求梯形的面积为什么要除以2?

求梯形面积需知哪些条件?

2.引导学生质疑,组织学生解题。

六、板书设计

典型例题

1、下图中梯形的面积是360平方厘米。

图形甲比乙少多少平方厘米?

分析:

思路一:已知梯形的面积是360平方厘米,又知梯形的上底和下底,可以求出梯形的高,也是三角形的高,再通过三角形的底和高分别计算甲、乙的面积,进而求出甲比乙的面积少多少平方厘米。

解:3602(10+30)=18(厘米)

10182=90(平方厘米)

30182=270(平方厘米)

270-90=180(平方厘米)

思路二:根据梯形的性质,上底和下底平行,所以甲和乙这两个三角形的高相等。由已知条件乙三角形的底是甲三角形底的3倍(3010),所以乙的面积是甲的3倍,即乙的面积比甲多2倍。梯形面积一共是360平方米,一共分成4份,一份是90平方米,所以甲比乙少902=180平方米。

解:3010=3

360(3+1)(3-1)

=902

=180(平方米)

答:甲的面积比乙少180平方厘米。

2、下图中直角梯形的面积是多少平方厘米?

分析:要求梯形的面积,先要求出梯形的高,我们可以根据45这个角再连出一个梯形的高,如下图

连出的三角形为等腰直角三角形,这就得出梯形的高就是2厘米,解决了关键问题。

解:(4+6)22=10(平方厘米)。

3、已知和是两个完全一样的直角三角形,,,,求梯形的面积。

分析:因为和面积相等,从中同时减去,剩下的面积也一定相等,即:梯形与梯形的面积相等,也就是说,要求梯形的面积,只要求出梯形的面积就可以了。

解:在梯形中,,,

(8+12)32=30

答:梯形的面积是30。

4、一个梯形,它的高与上底的乘积是15平方厘米,高与下底的乘积是21平方厘米,这个梯形的面积是多少平方厘米?

分析:根据题意可知:高上底=15,高下底=21,所以高上底+高下底=(上底+下底)高(乘法分配率)

又因为(上底+下底)高=梯形面积2

即15+21=36是梯形面积的2倍

解:(15+21)2=18(平方厘米)

答:梯形面积是18平方厘米。

5、一个直角梯形,若下底增加1.5米,则面积就增加3.15平方米,上底增加1.2米,就得到一个正方形。这个直角梯形的面积是多少平方米?

分析:若下底增加1.5米,则面积增加一个底为1.5米的三角形,已知三角形的面积是3.15平方米,底是1.5米,就可以求出该三角形的高,也就是梯形的高,3.1521.5=4.2(米)又知上底延长1.2米能得到一个正方形,说明梯形的下底和高相等,并且下底比上底多1.2米,这样可以求出梯形的上底,4.2-1.2=3(米),已知梯形上底3米,下底和高都是4.2米,可以求出直角梯形的面积。

解:(3+4.2)4.22=15.12(平方米)

答:这个直角梯形的面积是15.12平方米。

梯形的面积课件【篇8】

梯形面积的计算

教学内容:九年义务教育小学教科书数学第九册第80-81页

教学目标:

1. 使学生在理解的基础上,掌握梯形面积的计算公式,并能够正确计算梯形的面积。

2. 使学生通过操作和对图形的观察比较,发展学生的空间观念;培养学生的分析、综合、抽象、概括和运用转化的思考方法,解决实际问题的能力。

教学重点:掌握梯形面积的计算公式,并运用公式正确计算梯形的面积。

教学难点:梯形面积计算公式推导。

教具:计算机软、硬件一套,两个一般的梯形。

学具:每个学生准备两个完全一样的一般梯形。

教学过程:

一、复习铺垫

谁来说说,我们已认识了哪些平面图形?你会计算其中哪些图形的面积?那么,三角形的面积怎么求?(出示)

⑴三角形的面积怎样求?

⑵它们的面积怎样求?

⑶三角形的面积公式是怎样推导出来的?

二、导入新课

刚才大家说还认识梯形,你们谁来分别说出下列三个梯形的上底、下底、高分别是多少?

那如何计算这些梯形的面积呢?这就是我们今天要学习的新知识:

板书:梯形的面积

梯形面积公式的推导:

⑴提供思路,促进迁移。

师:我们能不能仿照三角形面积公式的推导方法,先把梯形也转化成我们学过的图形,来推导出梯形面积的计算方法呢?老师先不讲,你能通过自己的努力发现梯形的面积的计算机方法吗?

⑵用两个完全一样的梯形拼摆成学过的图形,从而推导出梯形面积的计算公

式。

A.学生独立拿出自己准备的梯形,拼成我们学过的图形,看谁拼得速度快。

B.指名说,你拼摆成了什么图形?(拼成了平行四边形)

C.微机演示,学生观察。

① 把两个完全一样的一般梯形重叠。

② 按住梯形右下顶点不动,使上面的梯形逆时针旋转180,到两个梯形的两下底成一条直线为止。

③ 右边梯形沿左面的梯形的右腰向上平移,直至拼成平行四边形形。

④ 闪现平行四边形底、高和梯形上、下底和高的关系。结合老师的演示和自己的操作思考讨论:(出示)

两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于____,这个平行四边形的高就等于______,每个梯形的面积就等于拼成的平行四边形的______,梯形的面积=____________________。

提问:这里为什么要“÷2”,求梯形的面积要知识哪些条件?

如果用S表示梯形的面积,用a、b、h表示梯形的上底、下底和高,字母公式表示成什么?

三、练一练

1. 教学便题(出示)

一条新挖的渠道,横截面是梯形(如图),渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

⑴读题,指出不理解的地方。

⑵学生练习,指名板演。

⑶集体较对。

2.做一做(大屏幕出示)

3.计算下面每个梯形的面积(显示)

4.练习1,计算下面每个梯形的面积(显示)

5.一座水电站拦河坝,横截面是梯形,上底是5米,下底是131米,高21米,求出横截面的面积。

6.思考题:求圆木的总根数。(显示)

四、总结

通过本节课的学习,你都学到了哪些知识?

梯形的面积课件【篇9】

学习目标:

1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

2、培养观察、推理、归纳能力,体会转化思想的价值。

3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

学习重点:

探索并掌握梯形的面积计算方法。

学习难点:

理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

学习准备:

剪下书后的梯形

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、按算式画出相应的图形,说说自己是怎么想的?

算式:4×34×3÷2

2、复习梯形的有关知识:举一梯形。

说说梯形的基本特征及各部分名称。

■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。

二.交流共享

■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

【板块一】学习例6:

(1)出示例6:

用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个梯形有什么特点?

测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

(3)如何计算一个梯形的面积?

从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

得出以下结论:

这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

成一个

这个平行四边形的底等于

这个平行四边形的高等于

因为每个梯形的面积等于拼成的平行四边形面积的

所以梯形的面积=

(4)用字母表示梯形面积公式:

三、反馈完善

1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

2、完成P15练一练

一个梯形的面积与整个平行四边形的面积有什么关系?

3、P5动手做

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

平行四边形,学习目标,计算方法,自信心,教学

梯形的面积课件【篇10】

放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。在这一环节中,学生出现了多种操作方法,如:一部分学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;一部分学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;还有一部分学生用一个梯形沿梯形的右上角到对腰的中点剪下,翻转180度,拼成一个三角形,推导出面积公式。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的主人,教师是组织者、引导者和参与者”。发展了学生的创新能力。还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。经过课堂小结的点拨,使得这一教学效果尤其明显。

反思整个课堂教学过程,还是存在着问题:

这可以从课堂教学中的两个地方看出来:一是在学生进行独立探究时,学生基本上已经有了将梯形转化为平行四边形和长方形这两种转化方法,但是小组代表上来向全班交流时却只说了一种转化方法(另一种是另外的同学补充的)。难道他们组就这一种?还是他只说了自己的方法,而没有交流到本组其他同学的方法?第二点是在小组操作交流时,总有个别学生,自己玩自己的,不愿与人合作交流,可能是小组的分工不够明确,学生合作的欲望未被调动起来。这么看来,显然课堂上组织学生进行的小组合作交流的成效性是相当不理想的!那么如何进行改进呢?我想主要在课堂上教师还是应该进行更多地巡视,更多地参与到学生的学习中去!在学生思维停滞住时适时的加以点拨,鼓励所有学生参与讨论、参与探究。充分体现课堂上教师的主导作用。

梯形的面积课件【篇11】

一、说教材

(一)内容分析:

小学数学教材中关于几何初步知识的安排特点是:梯形的认识,清楚了梯形的特征及底和高的概念。而本册教材中先安排了平行四边形的面积计算、三角形面积的计算的基础上,再安排学习梯形面积的计算。所以要使学生理解掌握好梯形面积的计算公式,必须以平行四边形的面积、三角形的面积、梯形的底和高为基础,运用迁移和同化理论,使梯形面积的计算公式这一新知识,纳入到原有的认知结构之中。

(二)教学目标:

1、通过学具的实际操作,学会用割补、拼凑的实验方法,运用学过的面积公式推导梯形的面积公式,并能运用梯形的面积公式解决简单的实际问题。

2、通过操作、观察、比较,渗透旋转、平移、转化的数学思想方法,培养学生的分析、综合、抽象和概括能力。

(三)教学重点:

发现、理解梯形的面积公式,并能正确运用。

(五)教学难点:

理解梯形面积公式的推导及推导过程。

教具:自制的课件,硬纸板做的平行四边形、梯形几个,剪刀。

学具:硬纸板做的梯形几个,剪刀,三角板,直尺。

为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,运用多媒体辅助教学,变静为动,融声、形、色为一体,为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

二、说教法

(根据以上的教学目标,教学重点和难点,我准备采用以下的教学方法进行教学)

1、发展迁移原则。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。

2、大胆放手,以学生为主体的教学原则。针对几何知识教学的特点、本节课的教学内容以小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,并运用计算机多媒体教学课件辅助教学,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体的教学原则。

3、反馈教学法。为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与梯形面积公式形成和运用的机会,使学生不仅学会而且会学。

三、说学法(关于学生学习方法方面的指导方面,主要有:)

坚持发展为本,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,要注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

四、说教学过程

针对上述内容的需要,可设计如下课堂教学环节:(一)迁移诱导,引入新课。(二)引导发现,探索创新。(三)分层训练,提高能力。(四)课堂总结,巩固新知。(下面我就分别从这四个方面说一说)

迁移诱导,引入新课。

迁移诱导,由已知到未知,即由旧知识引入新知识,为学生学习新知识创设情境,铺路搭桥,引导学生初步感知解决问题的途径进行类推,掌握新概念。这是教学抽象的数学知识的一种重要途径。三角形面积的计算这一内容,与长方形面积、平行四边形面积的计算有着密切的联系,适合用这一途径进行教学。

具体做法如下:

第一步,引旧设疑,提出问题.板演:一个平行四边形的底是40厘米,高是30厘米,面积是多少平方厘米?(学生反馈,应用计算机演示,以唤取学生对旧知识的`回忆。)

第二步,出示图形,复习旧知。出示准备好三角形纸片,提问:这是什么图形?什么叫三角形?谁能指出它的底和高?(底40厘米,高30厘米)

第三步:比较大小,产生悬念。比较黑板题中平行四边形和这个三角形的面积谁大谁小?它们是等底等高的,为什么面积不相等呢?通过第1、2两道题的复习,使学生清楚平行四边形的面积公式并清楚了三角形的概念及底和高的含义,为推导三角形的面积公式打下了扎实的基础。通过第3题的练习,产生悬念,引起学生学习三角形面积公式的动机与欲望,教师由此引出新课。对于等底等高的平行四边形和三角形的面积为什么相差这么大,必须科学的计算出它的面积,那么怎样计算三角形的面积呢?这节课我们就来研究这个问题。

平行四边形的面积课件精选12篇


下面是编辑为大家整理的“平行四边形的面积课件”内容,请收藏本文并分享给你的朋友们吧。在进行教学时,老师的首要任务是准备好教案和课件,编写教案和课件是每一位老师必须要做的事情。而学生的反馈又是教学过程中持续发展的重要推动力之一。

平行四边形的面积课件 篇1

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

1、掌握平行四边形的面积计算公式。

2、会计算平行四边形的面积。

本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

一、重在每个孩子都参与

本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

二、渗透“转化”思想,让所积累的经验为新知服务

“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。

虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!

平行四边形的面积课件 篇2

教学目标:    1、 使学生理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。    2、 培养学生初步的逻辑思维能力及空间观念。    3、 渗透转化的数学思想,培养学生的创造意识。教学重点:    理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。    教学难点:    掌握平行四边形面积的推导方法教学过程():    一、 复习长正方形的面积,渗透转化思想     1、复习长方形、正方形面积公式    提问:(1)我们已经学过了哪些平面图形的面积?    (2)怎样计算?            s=a×b          s=a×a     2、渗透平移的数学思想及转化的数学方法    (1)投影出示图形:

    (2)问:①你能计算出这个图形的面积吗?    ②你是怎样计算的?    ③通过平移把平行四边形转化成什么图形?    (3)师小结:在我们的学习中经常应用到转化的方法,把新知识转化为旧知识。今天我们就运用转化的方法学习平行四边形的面积计算方法。    (4)揭示课题:平行四边形的面积    二、动手操作建立联系,推导平行四边形面积公式     1、明确割补的方法    (1)提出要求:拿出准备好的平行四边形,看看能不能把平行四边形剪拼后转化成一个学过的平面图形,并尝试着找到平行四边形与学过的平面图形之间的联系。做完后同桌互相说说。    (2)学生动手操作。     (3)集体交流。    监控:(1)说说你是怎样做的?    (2)你剪拼成了什么图形?    (3)拼成的图形和原来的平行四边形之间有什么联系?     4)师:刚才我们沿着平行四边形的高剪下一部分后平移到另一侧,转化成长方形的方法,叫做割补的方法,这种方法是我们学习平面图形面积的.一种很好的方法。    2.利用割补的方法推导面积公式。    (1)提出要求:刚才我们通过动手操作把平行四边形转化成了长方形,我们已经会求长方形的面积,那么怎样求平行四边形的面积呢?同学们能不能通过长方形与平行四边形之间的联系,推导出计算平行四边形面积的方法。    (2)学生独立推导面积公式。    (3)引导交流:请你说说你是如何推导出平行四边形面积的? 教师板书:长方形的面积=长×宽↓  ↓ ↓  平行四边形的面积=底×高    (4)师:如果用字母S表示面积,a表示平行四边形的底,h表示高,那么平行四边形面积的计算公式可以写成S=a×h。    3.师小结:同学们,各种平面图形是有一定联系的,也是可以互相转化的。我们将平行四边形转化为已经学过长方形,从而找到了计算平行四边形面积的方法。在今后学习求其它平面图形的面积时,还要用到这种方法。    三、运用公式解决实际问题    1.基本训练:    (1)出示题目1:求下面平行四边形的面积。     (2) 提出要求:请大家独立解答    (3) 集体订正    (4) 出示题目2:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)     (5)提出要求:请同学们列式解答,并说出列式的根据。      (6)集体订正。    2.发散训练:    (1)出示题目1: 下面两个平行四边形面积都是3×2=6(厘米)。对吗?为什么?     (2) 提出要求:请同桌互相交流。    (3) 集体反馈。    (4)出示题目2:选择条件,用两种方法算出平行四边形的面积,看看是否相等。(单位:米)     (5)提出要求:请同学们独立解答。    (6)集体交流。    (7)师小结:在计算平行四边形的面积时,必须找到相对应底和高。    3、提高练习:    (1)提出问题:下面两个平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?     (2)提出要求:请同桌同学互相交流。    (3)集体反馈。    (4)问:在这两条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形?谁愿意来画一画?    四、全课总结    (1)问:这节课你学会了什么?    (2)问:你是怎样学会的?


平行四边形的面积课件 篇3

【教学内容】

义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

【教学目标】

1.通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

2.在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

3.通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

【教学重点】

平行四边形面积的推导过程、平行四边形的面积公式。

【教学难点】

平行四边形到长方形的转化过程。

【教学关键】

长方形和平行四边形的对比。

【教学方法】

猜想,动手操作,转化。

【知识基础】

长方形面积公式的推导过程、长方形的面积。

【教具准备】

活动的长方形边框

【辅助手段】

Ppt 课件

【教学过程】

一、情境导入,揭示课题

1.同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

(板书课题)

二、探究新知,操作实践

(一)激发思维,寻求探究策略

1.要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

方法一:数方格

方法二:将平行四边形转化为长方形

2.学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

3.学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

请同学们拿出学具,四人一小组研究研究。

学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

无论哪种方法,我们都是把平行四边形转化成长方形。

4.比较归纳,推导公式

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

这个长方形的长与平行四边形的底相等

这个长方形的宽与平行四边形的高相等

因为: 长方形的面积=长×宽

所以:平行四边形的面积=底×高

学生汇报公式,教师板书。同学们在心里默默的记记。

5.用字母表示公式

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

S=ah(学生说字母公式,师板书)

(二)解决问题

1.刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

用公式验证前面数方格的平等四边形的面积。

平行四边形花坛的底是6m,高是4m,

它的面积是多少?

学生说,师板书

(三)实际应用

一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

学生自己解答。

三、智力闯关

这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

(一)有空就填

1.推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

2.将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

3.一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是( )。

(二)明辨是非

1.平行四边形的面积等于长方形的面积。 ( )

2.平行四边形的底边越长,它的面积就越大。()

3.沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。 ()

3.6cm

5cm

4.5cm

4cm

4.一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

(三)鱼目混珠

如图,你能计算出这个平行四边形的面积吗?

四、课堂反思。

1.学生谈收获。

2.师生共同总结。

五、拓展延伸。

用木条做成一个长方形框,长 8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积课件 篇4

前端分析:

教材分析:《平行四边形的面积》是北京版教材五年级上册第三单元中的内容。这一教学内容是基于长、正方形面积计算和平行四边形的认识之上,并为以后的三角形的面积公式推导的方法奠定基础的。这节课的重点是探究平行四边形面积的计算公式,能运用公式解决一些实际问题,并在教学中向学生渗透事物之间相互转化的思想方法,培养学生的应用意识和分析推理的能力,体现多样化解题的创新精神。

学情分析:

学生已经掌握了平行四边形的特征以及推导计算长方形、正方形的面积。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

教学目标:

1、知识与能力:通过学生自主探索、动手实践推导出平行四边形面积计算公式,并会应用公式计算平行四边形的面积

2、过程与方法:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

教学重点:使学生理解平行四边形的面积公式,。

教学难点:转化方法及平形四边形面积公式的推导过程。

教学准备:课件、剪刀、平行四边形纸片、平行四边形活动框架

教学过程:

时间教师活动学生活动教学意图01分00秒

05分00秒

08分00秒

2分

5分

10分

10分一、游戏激趣。

同学们,我们以前学过哪些平面图形?你能快速说出它们的名字吗?

你还记得长方形和正方形的面积公式吗?

二、创设情境,引入新课

十一国庆节就快来临,工人师傅们正在修整一块草坪,你能计算出这块草坪的面积有多少平方米吗?

谁愿意大胆猜想一下?

看来你们之间存在着分歧,到底哪种思考方法是正确的呢。需要我们共同来验证

三、引导探究:

(一)大胆猜测,操作验证

1、赶快拿出我们手中的长方形框架拉一拉,看看它变成了什么图形?

现在的平行四边形与原来的长方形相比,你发现了什么?

如果把框架继续拉伸呢?

2、你们看,底没变,为什么面积越来越小呢?

如果高不变,底发生变化,又会怎样呢?

3、看来,平行四边形的面积应该它的与什么有关呢?

㈡、剪拼转化,推导公式

过渡:刚才我们通过操作、观察,发现了平行四边形的面积与它的底和高有关,那么它们之间的关系又是什么呢,有待我们进一步去发现。

你们有什么好方法吗?

(用数方格的方法,我们知道了它的面积,那这种方法适用于所有的平行四边形吗?如果这个平行四边形像我们操场那么大呢?)那该怎么办呢?能不能把平行四边形变成一个我们已经学过的图形呢?

各小组进行讨论:怎样进行剪拼转化?

操作提示:

(1)你们是怎样剪拼转化的?

(2)剪拼成的图形各部分与原平行四边形有什么关系?

(3)怎样推导计算平行四边形的面积?

2.汇报交流,归纳总结

⑴、谁愿意把你们探究的方法说给大家听呢?请上台来交流!

⑵、有没有不同的剪拼方法?(继续请同学演示)。

(3)在你们剪拼的过程中,不管是剪拼转化成长方形,还是正方形,大家发现有什么规律吗?

小结:同学们真棒,通过你们的汇报,看来大家都运用转化的方法将平行四边形这个新图形转化成了我们已经学过的长方形和正方形,建立图形之间的联系后,推导出了平行四边形面积的公式,数学家总结出来的知识,我们也能推导出来,你们真是太优秀了!

4、自学字母公式

你会用字母表示平行四边形的面积公式吗?

四、应用解决,巩固练习

下面利用刚才我们推导出来的平行四边形的面积公式来解决生活中的一些实际问题。

1、生活中的数学:

出示一个平行四边形的停车位,让学生求面积。

要求它的面积,必须知道什么?

2、判断题(略)

3、计算出下图的面积

2米10米3米4米5米

四、课堂小结

通过今天的学习,你有哪些收获?预设:长方形、正方形、平行四边形、三角形、梯形

学生猜想

(1)75=35底高

(2)73=21底斜边

周长没变,面积变小。

生:框架越拉,平行四边形面积也越来越小

生:平行四边形越来越扁,是高变短了

预设:平行四边形面积与底和高有关。

预设:可以通过剪拼,可以数方格

预设:数方格法太麻烦了

学生小组讨论,动手操作,拼摆

组内交流,选派代表,集体汇报,指着图形说拼摆转化过程,推导公式

预设:都是沿高剪开,平移后转化成长方形或正方形

学生说字母公式:

S=ah

生答:平行四边形的底和这条底上相对应的高引导学生根据长方形面积,大胆猜想,引发争议,产生实践验证的欲望。

通过演示操作、观察发现,感受面积与底和高有关

通过探究验证活动,推导平行四边形面积的公式,培养学生的逻辑推理能力和创造力

通过交流汇报,掌握平行四边形的求积方法

通过推导公式,使学生由感性到理性,培养学生抽象概括能力

将学到的知识用于实际,培养学生创造思维能力

巩固新知,应用公式解决实际问题

培养反馈监控能力

平行四边形的面积课件 篇5

教学内容:

书上总复习及练一练

教学目标:

使学生进一步理解和掌握平面图形的面积计算方法以及面积公式的推导过程,整理完善知识结构,正确解决实际问题。

教学过程:

一、课题引入:

最近我班有许多同学家里都买了新房子,所以在装修的时候,常要用到一些面积计算的方法。今天这节课我们就来学一学平面图形的面积。

二、说一说(计算方法)

1、提问:我们学过了哪些平面图形?

2、你能用字母公式来表达这些图形的面积吗?

三、想一想:(推导过程)

1、这六种图形的面积计算公式是怎样推导出来的?(学生每人选一个,说给同桌听)

2、全班交流:(学生口答,教师用电脑演示推导过程)。

其中三角形面积和圆面积的推导过程中再插入提问。

三角形:

①把三角形转化为什么图形?

②等底等高的三角形和平行四边形的面积有什么关系?

③如果已知三角形面积是5平方厘米,那么平行四边形的面积是多少?如果已知平行四边形的面积是5平方厘米,那么三角形的面积是多少?

圆:已知半径是3厘米,求圆的面积。

已知直径是4厘米,求圆的面积。

四、理一理:(知识结构)

1、在小学里我们首先学习的是长方形的面积计算,那么刚才哪几种图形在推导面积公式时,是把它转化为长方形来计算的?

2、三角形和梯形是转化为什么图形来计算的?

3、让学生说说怎样用图来表示这六种图形之间的关系?

4、观察结构图,说说之间的联系:

①从左往右看:根据长方形的面积公式可以推导出其他图形的面积公式。

②从右往左看:我们在探讨一种新的图形面积计算公式时,都是把它转化为学过的图形

平行四边形的面积课件 篇6

教学内容:

北师大版五年级数学上册第四单元(P53——P55)

教材分析:

本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

学情分析:

二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

教学目标:

经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

能运用平形四边形的面积计算公式解决相关的问题。

教学重点:

通过操作活动掌握平行四边形的面积的计算方法。

教学难点:

经历推导平行四边形面积公式的过程。

教法学法:

实验探究、推理验证、小组合作学习

教具准备:

课件、剪刀、准备平行四边形若干。

教学过程:

一、开门见山,导入新课

今天我们一起来探索平形四边形的面积。(板书课题)

二、新知探究

1.分析平行四边形给定的3个数据所表示的意义。

2.如何求这个平行四边形的面积,说一说你的想法和理由。

猜想:

(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

(2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。

3.借助方格纸数一数,比一比

学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

要求:

(1)独立完成

(2)小组内交流一下你的想法。

(3)方法展示。

(4)猜想结果:平行四边形的面积等于底乘高。

这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

4.平形四边形如何转化为长方形,验证猜想。

(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

(2)是不是沿任意一条高剪开都可以拼成长方形呢?

动手操作,验证猜想。

(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

(4)再仔细观察,你还有什么发现?

生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

5.怎样求平形四边形的面积?想一想,与同伴交流

(1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

(2)你会填吗?

A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。

B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

6.计算主题图中的平形四边形的面积。

三、实践应用,巩固与提高。

1.计算下列图形的面积(抢答)

(1)底为4厘米,高为2厘米。

(2)底为5分米,高为9分米

(3)底为3米,高为7米

2.判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等( )

(2)平行四边形底越长,它的面积就越大( )

3.计算下列图形的面积。(单位:厘米)

四、课堂小结。

1.你今天学习了什么?有何收获?

2.在计算平行四边形的面积时,应注意什么?

板书设计:

探索活动:平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

平行四边形的面积课件 篇7

教学要求:

1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2.养成良好的审题习惯。

3.培养同学们分析问题、解决问题的能力。

教学重点:

运用所学知识解答有关平行四边形面积的应用题。

教具准备:

卡片

教学过程:

一、基本练习

1.口算。

2.平行四边形的面积是什么?它是怎样推导出来的?

3.口算下面各平行四边形的面积。

(1)底12米,高7米;

(2)高13分米,底6分米;

(3)底2.5厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

(1)生独立列式解答,集体订正。

(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:

先求这块地的面积:25078010000=1.95公顷,

再求共收小麦多少千克:70001.95=13650千克

(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

与(2)比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500(250781000)

(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

(1)你能找出图中的两个平行四边形吗?

(2)他们的面积相等吗?为什么?

(3)生计算每个平行四边形的面积。

(4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

3.练习第10题:已知一个平行四边形的面积和底,求高。

分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

三、课堂练习

第7题。

四、小结

本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

平行四边形的面积课件 篇8

课题:平行四边形的面积

说课人:滑县枣村乡第一中心小学邓琳

一、说课题:

二、说教材:

几何知识的初步认识贯穿在整个教学中,是按由易到难的顺序呈现的。《平行四边形的面积》在本册教材中占有重要的位置。平行四边行面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边行特征的基础上,进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。它在整个教材体系中起到了承上启下的作用。

三、说教学目标:

1、知识目标:使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、能力目标:使学生通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

3、情感目标:通过活动,激发学生兴趣,培养学生的探索精神。感受数学与生活的紧密联系。.

四、说教学重点难点:

教学重、难点:推导平行四边形的面积的计算的计算公式。

五、说设计理念

针对以上的教材说明以及《课标》中指出的:“数学教学必须建立在学生的认知发展水平和已有的知识经验基础上,教师应激发学生的学习积极性向学生提供充分的从事数学活动的机会,帮助他们在自主探索和合作交流的过程中去理解和掌握知识。要充分拓展学生自学、质疑、讨论和训练的时间与空间,注重培养学生的自学能力和语言表达能力。所以本节课在教学时,我采用了“洋思”教学方法,做到先学后教,当堂训练,引导学生发挥自己的主观能动性,先进行自学,让他们去发现问题,提出问题,讨论问题,解决问题。在教学中还要注重学生学习能力的培养。如:学生的观察能力、比较、归纳能力,操作能力,合作交流能力等。

六、说教学环节:

根据上面的设计理念,本节课我设计了以下的六个环节:

(1)直接导入课题。

(2)出示学习目标。让学生做到心中有数。

(3)出示自学指导。让学生在规定的时间内,结合老师出示的自学指导进行自学,把学习的主动权交给学生。

(4)交流反馈。针对学生在自学中出现的问题进行讲解和分析。

(5)当堂训练。新课标理念下教师要做到面向全体,体现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上有不同的发展,所以在练习题的设计上我设计了闯关游戏,从易到难,从基础知识到拓展训练,让不同的孩子都能有不同的收获。

(6)全课小结。通过整节课的学习,让孩子们知道数学在生活中的重要性,让他们知道数学源于生活,而又应用于生活。

七、说学法:采用自学和小组合作的方法,在这一过程中提高学生学习的积极性,让学生主动参与到课堂教学中来,亲自去经历获得知识的成功体验,并且发展学生的各种能力。

八、说教法:

本节课最大的特点是让学生动手操作,分小组让学生自己动手进行剪拼,把静态知识转化为动态,把抽象的知识转化为具体可操作的规律性知识。主要采用洋思教学方法,让学生在老师的指导下自主地、快乐地解决问题。

九、教具学具准备:小剪刀、平行四边形的卡纸、题卡

十、说教学过程:

(一)导课:同学们,在前面我们学过了长方形和正方形的面积的计算,在平面图形中还有好多的图形,今天我们就来研究一下平行四边形的面积的计算。(板书:平行四边形的面积)直接导课,简单明了。

(二)出示学习目标:

1、知识目标:使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、能力目标:使学生通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

3、德育目标:通过活动,激发学生兴趣,培养学生的探索精神。感受数学与生活的紧密联系。.

(将重点词语用彩色字体出示,加深学生对目标的认识。这样以来,学生就知道学习本节课的目的是什么,对后面的学习打下了基础。)

(三)出示自学指导(自学课本79-81页)

1、观察79页的主题图,你都发现了哪些图形?你会计算其中哪些图形的面积?

2、观察80页上面的两个花坛,你会用前面我们学过的哪种方法来求出它们的面积?

3、请你用数方格的方法完成80页下面的表格,从中你发现了什么?

4、自学81页,我们可以把平行四边形变成前面学过的哪种平面图形来研究它的面积?它们之间有什么样的关系?

5、平行四边形的面积公式是什么?用字母怎么来表示?

平行四边形的面积课件 篇9

一、说教材

(一)教学内容:人教版六年制小学数学课本第九册“多边形面积的计算”中的“平行四边形的面积计算”。

(二)教材分析:

(1)教材的内容和地位:

教材的主要内容是:“平行四边形的面积计算”。本节课的学习,要求学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。很显然,这节课起到承前启后的作用。

(2)教材编写的特征:

教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。

(3)教材编写的内涵:

教材编写中渗透了数学中的变换思想,进一步地“发展学生的空间观念和思维能力”。同时较注重“培养学生良好的学习习惯和学习品质”,更重要的是通过“比一比、看一看、动一动、想一想”等手段让学生能在实际生活中“用一用”。

(三)教学目标:(知识目标、能力目标、情感目标)

1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。

3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

(五)教学重点、难点:

教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。

教学难点:使学生理解平等四边形面积公式的推导方法及过程。

利用知识迁移及剪、移、拼的实际操作来分解教学难点。平行四边形面积公式的推导,关键是平行四边形与长方形的等积转化问题的理解,主要找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

(六)教具、学具准备:

多媒体、平行四边形课件,学生准备任意大小的平行四边形纸片、三角板、剪刀。

二、说教法、学法

(一)说教法

本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。在本节课中,以小组为单位共同合作完成;培养学生自主、探究、合作的精神。让学生亲身体验知识的形成过程,促进学生思维的发展。

教法的体现:(1)在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。(2)在探究过程中,我很重视学生动手操作,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

(二)说学法

坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力。

三、说教学过程:

为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学教程分为以下几个教学环节。

(一)创设情境,设疑引入

以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

(二)操作探索,推导公式

1、数方格法求面积(课件出示)数完后,问问学生结果如何?你发现了什么?

这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

2、转换法

教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?

然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?

学生动手若干分种,教师要注意巡视,可选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。

3、归纳:

提问:这个平行四边形转换成了什么图形?它们的面积有变化没有?拼成的这个长方形与平行四边形的底和高有什么关系?

得出结论:平行四边形的面积=底×高。

用字母怎样表示?S=ab

在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

(三)实际应用:

1.测量平行四边形的长、高。

2.计算停车场的面积。

3.变式练习。

4.拓展练习。

四)全课总结,质疑问难。

问学生:这节课我们学习了什么,你学会了什么?

主要目的是了解学生对这节课的知识有一个全盘的认识,培养学生整理知识的能力。

四、说预设效果

这节课的设计,主要是通过突破难点达到突出重点的教学思路。教学难点的突破主要是给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,应用新知,让学生体会学习数学的快乐。使学生的动手操作能力得到了提高。初步形成了空间观念、渗透了转换思想,总之使学生掌握了学法,为学习提供一把释疑解难的钥匙。

五、板书设计:

长方形面积

=长×宽

平行四边形面积=底×高

课后反思

金秋十月,桂花飘香。我有幸参加《平行四边形的面积》“同课异构”的教学研讨。下面我将自己的教学做如下反思:

建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

有助于学生感受教学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,理解数学,提高学生的数学解决问题的能力。

在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。

在操作探索,推导公式中。先启发谈话,猜测平行四边形的面积,然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?

学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算平行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。

感悟

正如波利亚所说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在案例二中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智,通过不同角度的探索,想出这么多的方法来解决新问题;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。

多次实践使我们体会到,只有当教师真正了解了学生的需要,才能做到“该出手时才出手”,才能在学生感到“柳暗花明疑无路”时,他才巧妙地“拨开乌云见月明”,让学生眼前“豁然开朗”,只有这样的帮助才是促进学生发展所需要的真正的帮助。也许这样,我们的学生会遇到困难和挫折,我们的课堂会失去“严谨”和“流畅”,也许预设的任务会难以完全达成,但当我们发现学生敢于独立思考,奋力向前,大声喊出“让我试试”;当课堂成为学生的天地,真正体会到“海阔凭鱼跃,天高任我飞”的美妙滋味时,身为教师,我们还有什么理由一味地信守着“师者,传道授业解惑”的传统观念呢?

我们是农夫,但不是“拔苗助长”的农夫,应是一个懂得怎样真正帮助禾苗成长的“农夫”,是一个让“禾苗”充分享受自由空间、阳光和雨露,也经历风吹雨打,最终能品尝到“硕果累累”之喜悦的农夫。

平行四边形的面积课件 篇10

设计说明

在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

1.动手实践,多维探究。

数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

2.分层运用新知,逐步理解内化。

新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

课前准备

教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀

学生准备 练习卡片 平行四边形卡片 剪刀

教学过程

⊙创设情境,导入新课

1.常用的面积单位有哪些?

2.出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?

根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。

(板书课题:平行四边形的面积)

设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。

⊙操作实践,探究新知

一、数方格法。

1.复习旧知。

师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

(出示方格纸)

师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)

师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

2.填写并观察表格。

设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

二、割补法。

1.讨论:你们准备怎样将平行四边形转化成长方形呢?

预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

2.组织学生操作,教师巡视指导。

3.教师示范平行四边形转化成长方形的过程。

(1)先沿着平行四边形的高剪下左边的直角三角形。

(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

4.观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

(2)这个长方形的长与原来的平行四边形的底有什么关系?

(3)这个长方形的宽与原来的平行四边形的高有什么关系?

(4)思考后填空。

①原来的平行四边形的底与长方形的( )相等。

②原来的平行四边形的( )与长方形的( )相等。

③这两个图形的( )相等。

平行四边形的面积课件 篇11

一、说教材

(一)说课内容:人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第80-81页的内容。

平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。

(二)教学目标

知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

(三)教学重点、难点、关键点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法—转化与等积变形。

关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

(四)教具、学具准备:多媒体课件、实物投影仪、平行四边形卡片、剪刀。

二、学生分析:

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

三、说教法、学法教法:

(一)说教法

1、发展迁移原则

运用迁移规律,把平行四边形转化成长方形进行教学。注意从旧到新,体现“温故知新”的教学思想和等积转化这种重要的数学思想。

2、学生为主体,教师为主导的教学原则

针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

3、以实物教具、学具作为辅助手段进行教学,体现直观、形象原则。

4、运用探究式教学方法,教会学生自主合作、动手实践、观察交流的探究式学习方法。

5、教学设计联系生活实际进行教学,渗透数学无处不在的的思想,培养学生用数学知识解决实际问题的意识。

(二)说学法

学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。

1、小组合作学习,培养学生团结协作的合作意识和能力。

2、引导学生用探究式学习方法,会用这种学习方法进行自主学习,并留给学生足够的探究学习的时间。所以我计划用20分钟左右的时间让学生在老师的引导下通过动手操作、发现、讨论、总结、推导出平行四边形的面积计算公式。以此来突出这节课的重点,突破难点。

3、我用:两个老师家的车位是否能调换?贯穿整个教学活动,把教学活动变成了帮忙解决生活问题的活动,联系生活实际,并且做到首尾呼应,过度自然。使学生明白:数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

四、说教学过程

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:

一、情景引入,激趣导课(课件出示两张车位照片)

(一个长方形的车位和一个平行四边形的车位)

创设生活情景,问:为了生活方便,能否交换两家的停车位?

揭示课题,并板书课题。

(设计意图:通过创设情景,提出问题,促使学生积极动脑猜想,要比较两个车位的面积,必须会计算长方形和平行四边形的面积。长方形的面积会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算)

二、动手实践,探究发现。

1、指导学生预习课本81页的内容,使学生通过自学掌握平行四边形转化长方形的方法。

2、实践操作,提出猜想。

请同学们想一想,想好了小组交流,并动手用学具,联系学过的方法,在小组里讨论,看哪组能最快解决问题?

(1)学生小组合作,动手操作。

教师巡视指导。

(我在设计学具时,在平行四边形学具上画有高和任意斜线。意图是使学生在操作中明白:只有沿着高剪才能拼出长方形。)

(2)适时引导学生,围绕以下两个问题进行讨论:说说你发现了什么?

①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、交流汇报。学生先全班交流,教师在指名到实物投影仪上演示拼剪过程,并说出小组的发现。

4、教师课件演示,边演示边讲解。

5、强化拼剪过程及发现,推导成平行四边形面积公式。

6、前后呼应,解决悬念。

计算导入时的两个车位面积,得出结论:能调换两个车位,因为两个车位的面积相等。

7、课堂阶段性小结。

设计意图:新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:实践——理论——实践。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。

三、尝试计算,强化练习。

1、口算。

(1)a=4m,h=3m,S=? (2)a=8cm,h=6cm,S=?

2、求下面图形的面积。

自选条件计算。

强调:求平行四边形的面积必须用底×高,不能底×邻边。

3、解决问题。

(1)拓展延伸(机动练习)

(2)有一块平行四边形铁板,底边长25米,高是13米,每平方米重7.8千克,这块铁板重多少千克?

练习设计第一题:用字母出示底和高,求面积。第二题:看图自选条件计算。第三题:文字出示已知面积和底,求平行四边形的高。题目呈现方式的多样,难度阶梯式深入,有层次的练习设计,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。从字母到图形再到文字,层层深入,强化提高。把拓展练习设计为机动练习是为课堂生成做的一种预设。

四、课堂小结,巩固新知。

1、这节课我们学习了什么知识?

2、有关平面图形的知识,你还想知道什么?

设计意图:有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

平行四边形的面积课件 篇12

【教材分析】

本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

【教学目标】

知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

【学情分析】

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

【教学重点】

掌握平行四边形面积计算公式。

【教学难点】

平行四边形面积计算公式的推导过程。

【教具】

两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

【教学过程】

一、创设情境,引入课题。

1、游戏:小小魔术师。教师出示不规则图形。

(1)师:你能直接计算出这个图形的面积吗?

(2)师:你能计算出这个图形的面积吗?说一说用什么方法?

(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

(设计思路:温故是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

二、激趣引思,导入新课。

师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

生1:我想知道要花多少钱才可以做成。

生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

生3:我想知道这块胶合板的面积有多大。

师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究平行四边形的面积。(板书课题:平行四边行的面积)

(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

三、动手操作,探究发现。

1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

(1)这个平行四边形的面积是多少平方厘米?

(2)它的底是多少厘米?

(3)它的高是多少厘米?

(4)这个平行四边形的面积跟它的高与底有什么关系?

(5)请同学们猜一猜:怎样计算平行四边形的面积?

2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

生:不方便。

师:既然不方便,我们能不能用更方便的方法来解决呢?

小组交流,学生讨论,发表意见。

生:用剪和拼的方法。

师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

师:再请一个同学展示一下,他的剪法有什么不一样吗?

(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。(展示学生的成果)

师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

小组讨论:

⑴原来平行四边形的面积和拼成的长方形的面积相等吗?

⑵原来平行四边形的底与拼成的长方形的长有什么关系?

⑶原来平行四边形的高与拼成的长方形的宽有什么关系?

师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)

师:长方形的面积=长宽,那么平行四边形的面积怎样求?

生:平行四边形的面积=底高(板书)

师:同意吗?谁能讲一讲,为什么平行四边形的面积=底高?结合刚才一剪一拼的过程说说。(生叙述方法)

教师小结方法指名让生叙述。

师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

师:现在我们可以确定当初的猜想谁是正确的?

(设计思路:让学生对平行四边形面积的计算方法提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

四、实践应用,巩固提高。

师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

教师板书:54=20(平方米)

出示例1(同桌讨论,独立完成,最后全班交流。)

教师板书:S=ah=64=24(平方米)

师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

五、分层练习,强化应用。

1、填空。

(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形()。这个长方形的长与平形四边形的底(),宽与平行四边形的高()。平行四边形的面积等于(),用字母表示是()。

(2)0.85公顷=()平方0.56平方千米=()公顷

2、计算下面各个平行四边形的面积。

(1)底=2.5cm,高=3.2cm。(2)底=6.4dm,高=7.5dm。

3、解决问题。

(1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

(2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

六、总结升华,拓展延伸。

1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

(设计思路:通过说一说,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

2、课后练习

(1)、练习十五第1题,第2题。(任选一题)

(2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

(设计思路:分层次布置作业,让学生根据自己的能力,适当选择作业。这样做,一来可以提高学生的学习兴趣,二来体现了让学生在数学上得到不同的发展。)

【教学反思】:

一、调动了学生学习的积极性和主动性

这节课我使用了多媒体教学课件,通过图文并茂,把静止的问题活动话,激发了学生学习的积极性和主动性,节省了课堂教学的时间。学生将两个不规则的图形转化成了长方形求出了不规则图形的面积,接着出示一个平行四边形,如何求平行四边形的面积呢?这样引入新课,调动了学生学习的兴趣。

二、创造出宽松和谐的环境,引导学生探究。

课堂上为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证。

这节课组织学生进行自主探究、合作交流是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。

梯形面积教案


想要全面了解“梯形面积教案”的相关知识,小编特别推荐这篇文章给您,请您关注并认真阅读。在教师的工作中,编写教案课件是非常重要的一部分,但并不是随随便便写上几句就可以的。编写教案需要考虑到实际操作的可行性,才能更好地指导教学。

梯形面积教案(篇1)

一、复习准备。

1、出示平行四边形图。

2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?

3、揭题。

二、新授。

1、出示梯形图。

(1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?

(2)操作实验。

反馈:你拼成了什么图形?指名拼一拼。

指导拼法。

①重合。

②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。

③平移。

思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?

2、出示直角梯形图。

(1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。

(2)提问:拼成了什么图形?平行四边形与梯形有什么关系?

(3)观察:每个直角梯形的面积与拼成的长方形的面积有什么关系?

小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。

3、观察拼成的平行四边形。

思考:(1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?

(2)比较梯形的高与拼成的平行四边形的高有什么关系?

同桌讨论完成填空。

4、填表。

(1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。

(2)从实验中你有什么发现?说说怎样求梯形的面积?

5、教学字母公式。

提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。

三、应用。

1、应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?

2、学习例题。

3、完成“练一练”。

4、拓展。

四、总结。

1、这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?

2、通过什么方法转化的?

3、梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?

五、板书。

梯形面积的计算

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高2

S=(a+b)h2

梯形面积教案(篇2)

教学目标:

1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。

教学重点:发现、理解和应用梯形面积计算公式。

教学难点:理解公式的推导过程

教具准备:计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

学具准备:每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

教学过程:

一、迁移诱导,激发参与兴趣

1、启发学生回忆三角形的面积推导公式。

2、板书课题,引入新课。

二、实验操作,引导参与探究

1、转化

学生分成四人小组进行学习。

独立拿出准备好的各种梯形,拼成学过的图形。

学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

2、观察

学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

板书如下:梯形面积拼成的平行四边形面积的一半

平行四边形的底梯形是上底+下底

平行四边形的高梯形的高

3、推导

学生分组讨论,教师巡视,注意点拨。

学生反馈,教师注意用规范的语言进行调控。

板书如下:

平行四边形面积=底×高

梯形的面积=(上底+下底)×高÷2

S=(a+b)×h÷2

提问:计算梯形的面积为什么除以2?

三、反馈调节,巩固参与成果

1、引导实际应用,巩固梯形面积公式

2、分层训练,培养能力

3、发展提高,深化知识

梯形面积教案(篇3)

教学内容:

教科书88页和89页

教学目标:

(1)探究梯形面积计算,理解公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力以及动手操作能力。

(3)进一步渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教具准备:多媒体课件

教学过程:

一、创设情境,引出问题

教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

问:同学们这块地是什么图形啊?

生1:这是一个梯形。

问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

生2:必须先知道梯形的面积。

师:今天我们这节课就来研究“梯形面积的计算”(板书)。

二、探究新知。

(1)、铺垫孕伏。

组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

重点突出旋转、平移、割补的数学思想。

(2)、协作研讨,探求方法

1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

师:谁能介绍一下这个梯形?

生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

生4:(3+5)42=16(平方厘米)

生5:542+342=16(平方厘米)

生6:(5+3)42=16(平方厘米)

生7:(5-3)42+34=16(平方厘米)

生8:(5+3)(42)=16(平方厘米)

生9:(3+5)24=16(平方厘米)

生10:34+(5-3)42=16(平方厘米)

师生交流、点评……

3、总结规律,渗透数学思想方法

师:这些方法有什么共同的地方吗?

生11:结果都是16平方厘米。

生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

师:这几个数字和梯形有什么关系吗?

生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:现在谁能猜一猜梯形的面积计算公式是怎样的?

生14:梯形的面积=(上底+下底)高2

师:如果用字母S表示梯形的面积,a表示梯形的.上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

生15:S=(a+b)h2

三、应用知识,解决问题

1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

生16:(300+200)100210=2500(棵)

2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

3、提高能力练习:共同探讨练习十八的第四题。

四、知识小结,体验学习的快乐!

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

梯形面积教案(篇4)

教学目标:

1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

教学重点:

理解并掌握梯形面积公式,会计算梯形的面积。

教学难点:

自主探究梯形面积公式。

教具准备:

CAI、完全一样的梯形若干个。

学具准备:

每生准备两个完全一样的梯形。(有等腰、直角、一般)

课前预习:

梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。

课前准备:

谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

教学过程:

一、创设情境,激发兴趣。

(出示情境图)。

谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

师:根据发现,你能提出什么数学问题?

学生观察情境图,提出问题。

生:1号甲鱼池的面积有多大?

师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

生:1号甲鱼池能放养多少甲鱼苗?

二、自主探究梯形的面积计算方法。

1、教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

生:梯形。

师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

2、小组讨论交流,教师巡视了解。

3、展示、汇报交流。

师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

师:谁有不同的方法?

生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:这个同学说的太好了。大家认为这个方法好不好?

这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

生:平行四边形的底,平行四边形的高。

师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

师:这个方法是不是所有的两个完全一样的梯形都可以用。

生:是两个直角梯形。

师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

第一种是把梯形分割成一个三角形和一个平行四边形;

第二种是把梯形分割成两个三角形;

第三种把两个完全一样的梯形拼成了一个平行四边形。

表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

生:上底和下底,高

生:与腰有关。

师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

三、探究操作,推导出梯形面积公式

(一)出示问题,明确目标

我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

师板书:两个完全一样的梯形拼成平行四边形

梯形的面积=拼成平行四边形面积÷2=底×高÷2。

拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

(二)自主探究

合作学习

小组内讨论交流。

学生分组动手操作,教师巡视指导。

教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

(三)成果交流,质疑解难

1、全班展示回报

师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的.(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

师:你们也是这样想的吗?哪个小组再来说说你们的做法?

2、师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

梯形面积=平行四边形面积÷2梯形面积=底×高÷2

师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

3、师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

板书面积公式:梯形的面积=(上底+下底)×高÷2。

提问:(上底+下底)×高算的是什么?为何要除以2?

4、学习字母表达式

谈话:谁能用字母表示?说说每个字母分别表示什么?

师:S=(a+b)×h÷2(板书)

四、运用知识,解决情景问题。

师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

五、随堂检测,巩固目标。

师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

挑战自我:

一、判断

1、两个梯形就可以拼成平行四边形。()

2、梯形的面积一定比平行四边形的面积小。()

3、在下图中平行四边形的面积是梯形面积的2倍。()

师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

二、(挑战自我)

解决问题

1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,这个梯形台的平面是多少平方米?

2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

师:显示我们聪明才智的机会到了,请同学们大显身手。

4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

学生独立练习,全班交流。

六、小结。

通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?

同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。

梯形面积教案(篇5)

九年义务教育六年制小学数学五年级上册

《梯形面积的计算》教学设计

教学目标:

1、运用图形的旋转、平移的数学转换思路理解和掌握梯形面积公式的推导,提高思维水平。

2、引导学生在参与探索的过程中,发现并掌握梯形面积的计算方法,能灵活地运用梯形面积公式解决相关的数学问题。

3、进一步体会利用转化的方法解决几何知识中的问题,培养学生观察、操作、比较、推理等逻辑思维能力与初步假设、实验、验证等科学探究的能力。

4、体验创新的乐趣,使每个学生都获得个性化的发展。教学重点:梯形面积的计算

教学难点:梯形面积公式的推导 教具准备:课件、梯形卡片

学具准备:剪刀、直尺、卡片、一、创设情境,导入新课

猜图形:三角形、平行四边形、梯形

电脑演示:

1、复习三角形面积计算公式的推导过程

2、复习近平行四边形面积计算公式的推导过程

3、板书:梯形面积公式的计算

二、合作交流 探求新知

1、梯形面积公式的推导

(1)如何推导梯形面积计算的公式?让学生自己谈初步设想。

(2)分组讨论、操作:学生借助手头的学具、工具运用已学的经验方法进行尝试。(3)归纳学生的推导过程,课件演示拼合法、割补法、分解法、数方格法推导梯形面积计算公式的过程。

(4)归纳梯形面积计算的公式,引出它的字母公式。

2、公式应用:(1)例题

例题:一条新挖的渠道,横截面是梯形。渠口宽2.8米, 渠底宽1.4米,渠深2米。它的横截面的面积是多少平方米?

(2)课件出示水渠横截面图、师生共同解答

2.8米1.4米()2.81.424.2224.2(平方米)2答:它的横截面的面积是4.2平方米。

三、师生互动、巩固新知

1、判断:

①只有一组对边平行的四边形是梯形()

②面积相等的两个梯形一定可以拼成一个平行四边形()③S梯形=上底+下底×高÷2()

2、算一算下列梯形的面积

1厘米2厘米3.5厘米

3、找一找生活中的梯形并编出符合实际的应用题

(顶层根数+底层根数)层数 2

四、拓展延伸、深化提高,运用学具摆花园设计图,学生自由组合,分组设计。

我当设计师我校决定在操场东侧建一个面积为20平方米的圆形花坛,内设一些形状各异的小型梯形花池,便于种植不同的花卉。请你来设计,你认为怎样设计合理呢?请你用学具摆出设计图。你能否预算出每一小花池的面积?

五、归纳总结提出要求。

梯形面积教案(篇6)

今天我说课的内容是:

一、说教材

1、说教材的地位和作用

《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

2、说教学目标、重点、难点

根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:

知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

二、说学生

由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。

三、说教学策略

根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:

1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、采用“小组活动,合作探究的教学方法”。

在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。

3、采用直观教学法。

在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。

通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。

四、说教学实施过程

基于上述认识与理解,我对梯形的面积教学流程作了如下设计:

第一环节:创设情境,导入新课

上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。

第二环节:动手操作,探究新知

新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。

梯形面积教案(篇7)

教学目标: 1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

(1)投影出示一个三角形,提问:

这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

①教师提出问题引导学生观察。

a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

第二层次,深化认识。

(1)启发学生回忆平行四边形面积公式的推导方法。

①提问:想一想平行四边形面积公式是怎样推导得到的?

②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

(2)引导操作。

①平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

②学生动手操作、探究、讨论,教师作适当指导。

(3)信息反馈,扩展思路。

说一说你是怎样割补的?教师展示各种割补方法。

第三层次,公式应用。

(1)出示课本第89页的例题,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

2023长方形的面积课件精选5篇


长方形的面积课件 篇1

教学目标:

1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。

2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。

3、交给学习方法,发挥学生的主体性。初步培养学生提出问题、分析问题、解决问题的能力。

教学过程:

一、创设情景,导入新课

1、上节课我们学习了有关面积的知识,常用的面积单位有哪些?

2、巧设问题,激发兴趣。

我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。(板书课题)

二、动手操作,研究方法

1、教师准备三种不同的长方形,每组只选择一种进行研究。

一个长3厘米、宽4厘米的长方形 ;一个长4厘米、宽2厘米的长方形;一个长5厘米、宽3厘米的.长方形

(1)学生以组为单位进行研究,想办法求出各自图形的面积。

(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。在这个过程中教师适时地进行点拨、指导,后一种方法比较简单。)

(3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。

(4)学生思考:求长方形的面积事实上是求什么呢?

2、那么同学们想一想我们教室地面的面积怎样计算呢?(例题)

学生独立完成,校对

3、学习正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。

4、出示例题3。学生试做,汇报答案。

三、联系生活,解决问题

1、我们用的数学书的面积大约有多少?先请你估计一下,再算一算。(学生独立完成,汇报。)

2、生独立完成P79页第1、2题。

四、全课总结

1、通过今天的学习,你有什么新的收获?

2、师总结。

长方形的面积课件 篇2

教材分析:

本单元是在学生已经初步掌握长方形和正方形的特点以及它们的周长的计算的基础上进行教学的。教材包括以下内容

1、面积与面积单位。教学时要充分利用直观,调动学生多种感官进行教学活动。 使学生理解面积的含义,对常用的面积单位(平方厘米、平方分米、平方米)建立正确的表象。教材还特别安排了面积单位和长度单位的比较,以免混淆面积和周长的计算。

2、长方形、正方形面积的计算。这一部分内容很重要,它是学生以后学习其它平面图形积计算的基础。在教学过程中,教师要着重引导学生动手操作,找出面积与边长的关系,从而总结出面积计算公式,让学生体验知识形成的过程。

3、面积单位间的进率。这里教材内容包括单位间进率和简单的换算,学好这个内容不但能加深学生对每个面积单位大小的印象,而且又能提高解决实际问题的能力。

4、公顷、平方千米。这一内容主要是介绍教大的面积单位,它常用测量土地面积,我们有时称它为“地积单位”。认识这两个面积单位,对以后的生活 、生产劳动有很大的帮助。

教学目标:

1、使学生理解面积的含义,对常用的面积单位建立起正确的表象,掌握长方形,正方形面积的计算方法,并能较熟练地进行解答,掌握面积单位间的进率,并能进行简单计算。

2、能运用所学到的知识,技能。来解决实际生活中遇到的有关问题,增强能力。

3、在学习过程中,感受数学的乐趣,感受数学知识来源于生活,数学知识应用于生活,服务于生活。

4、通过学习活动,培养团结协作精神。

教学重点:

理解面积的含义,建立正确的常用的面积单位的表象,掌握长方形、正方形的面积的计算。

教学难点:

长方形、正方形面积单位的推导过程。

教学关键:

教师要引导学生动手操作、认真观察,找出面积与边长的关系。

第三课时

长方形、正方形的面积计算

教学内容:

课本第77~78页例2

教学目标:

1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。

2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。

3、初步培养学生提出问题、分析问题、解决问题的能力。

教学重点:

会计算长方形和正方形的面积。

教学准备:

课件

教学过程:

一、复习引入,自学反馈

同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?

二、教师点拨,领悟方法

1、巧设问题,激发兴趣

我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。

2、动手操作,研究方法

(教师准备三种不同的长方形,每组只选择一种进行研究。) 一种:一个长3厘米、宽4厘米的长方形 二种:一个长4厘米、宽2厘米的长方形

三种:一个长5厘米、宽3厘米的长方形

(1)学生以组为单位进行研究,想办法求出各自图形的面积。

(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。)

在这个过程中教师适时地进行点拨、指导,后一种方法比较简单。

(3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。

教师指导:长方形的长摆了5排,说明是5厘米;宽摆了3排,说明是3厘米,那么,面积15平方厘米等于什么?长方形的面积=长×宽。)

(4)学生思考:求长方形的面积事实上是求什么呢? 那么同学们想一想我们教室地面的面积怎样计算呢?

课件出示:例2 学生独立完成,校对

三、知识的迁移

教师借此机会教学正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。

四、联系生活,解决问题

1、我们用的数学书的面积大约有多少?先请你估计一下,再算一算。 学生独立完成,汇报。

2、完成课本第78做一做。

3、完成课本第79页1、2、3、4题。

五、小结

这节课我们学习掌握了长方形和正方形面积计算公式,长方形面积等与长乘宽,正方形面积等于边长乘边长,应该注意的是计算面积单位一定要用面积单位,不要与长度单位混淆。

今天你有什么收获?

板板书设计:

长方形、正方形面积的计算

长方形的面积=长×宽

正方形的面积=边长×边长

长方形的面积课件 篇3

教学内容:教科书51页。 长方形和正方形的面积的应用。

教学目标:

1、通过练习进一步学会区分、比较周长和面积。

2、培养学生运用所学周长和面积的知识来解决生活问题的能力。

3、体验周长和面积的知识与现实生活的联系。

教学重难点:

学会区分、比较周长和面积。

教学过程:

一、通过复习旧知,导入本节练习。

二、练习

1、比较面积相等的长方形,它们的周长是否也相等。

这道题可以先让学生猜想,然后再通过计算来验证。从而得到:面积相等的长方形,它们的周长不一定相等。还可以进行拓展训练,如果周长相等的长方形,它们的面积是否相等。

2、第5题

先让学生交流一下怎样包书皮,亲自动手包一包、试一试,然后再出示该题让学生思考。得到:长方形纸的宽应比书本的长长一些,长要比书本宽的2倍多些。从而判断用这张纸来包书皮是完全可以的。

3、“聪明小屋”

可以先求出一个长方形的周长和面积,再算6个长长方形的周长和面积。如果学生还有其他算法,只要有道理,教师都要加以肯定,予以表扬。周长36厘米,面积12平方厘米。在计算周长时,如果学生用(12+6)×2一定要让他说说是怎样想的,并要给与充分的肯定。

4、可以根据实际情况再加一些练习题。

课堂练习设计:

长方形的面积课件 篇4

教学内容:

长方形面积的计算(《现代小学数学》第六册).

教学目标:

1.使学生掌握长方形面积计算公式的形成过程,并且会运用公式进行计算.

2.通过对长方形面积计算公式形成过程的理解,培养学生初步的空间观念及思维的深刻性.

3.培养学生合作学习的精神和动手实践的能力.

教学重点:

长方形和正方形面积计算公式的掌握和初步应用.

教学难点:

理解长方形面积计算公式的形成过程.

教学用具:

电脑、每个学生6个1平方厘米的小正方形、直尺、米尺、卷尺.

教学过程:

一、复习引入.

1.提问.

(1)我们已经学习了哪些面积单位?

(2)这些面积单位是怎样规定的?

(3)用手比划一下1平方厘米、1平方分米、1平方米的面积有多大.

2.说出下面图形的面积.(电脑演示)

画面一:

问:边长1厘米的正方形面积是多少平方厘米?

问:这个长方形的面积为什么是20平方厘米?

生:一排有5个1平方厘米,有4排,一共有20个1平方厘米.这个长方形的面积就是20平方厘米.

问:这个图形的面积是多少?你是怎样数的?

(先移动成为长方形再数)

设疑:这个长方形的面积是多少?为什么答不出?你能想想办法吗?

导语:有些长方形的面积用数方格的办法数不出来,有些面积比较大的,如长方形操场,教室地面,用摆的方法也很不方便.这就需要我们必须找到长方形面积的计算方法.下面我们一起研究.[板书课题:长方形面积计算]

二、探讨新知.

1.理解长宽.(抢答)

问:长方形的长、宽各是多少?

问:为什么长是6厘米、宽是3厘米?

生:因为每个小正方形的边长是1厘米.

沿长边依次摆6个小正方形,长是6厘米.

沿宽边依次摆3个小正方形,宽是3厘米.

问:通过上面的练习,你能知道长、宽与什么有联系吗?

生回答后师总结:一排摆几个,长就是几厘米;摆几排,宽就是几厘米.表内板书:[长(cm)宽(cm)]

2.实践感知.

师:请你用6个1平方厘米摆一个长方形.(师巡视)

汇报你是怎样摆的?(生说师板书)

3.观察讨论.

讨论:仔细观察表格内长、宽、面积的数据,2人一组讨论:长、宽与面积之间有什么关系?

初步得出结论:长方形面积=长×宽

4.深入探讨.

师:所有长方形的面积都等于长乘以宽吗?我们再来研究一个例子.2人一组用12个1平方厘米摆成长方形,比一比哪组摆的方法多.1个同学做记录.

师巡视,汇报结果如下:(电脑演示,可让学生操作)

问:这些长方形的面积与它的长、宽有什么关系?

你能总结出长方形面积的计算公式吗?

[板书:长方形面积=长×宽]

如果用S表示面积,a表示长,b表示宽.字母公式是:

[板书:S=a×b]

5.释疑

师:复习中画面七那个长方形你能准确地求出它的面积了吗?

生:先测量长和宽再计算.

三、巩固练习.

1.直接列式计算.(口答)

2.判断对错.

(1)5×2=10(dm) ( )

(2)(5+2)×2=14(dm) ( )

(3)5×2=10(dm2) ( )

(4)2×5=10(dm2) ( )

反馈:(1)为什么错?

(2)求的是什么?(周长)你能指一指求的是哪里吗?

(3)求的是什么?请你指出来.

(4)为什么对?

3.动手实践.

师:教室里有很多物体的面是长方形的,请你测量并计算它们的面积.

步骤:(1)各组讨论分工(测量、记录、计算).

(2)汇报分工情况.

(3)分小组进行测量.

(4)反馈交流.

选测量正方形的小组,问:长和宽相等了,是什么形状?你能总结出求正方形面积的计算公式吗?

[板书:正方形面积=边长×边长S=a×a]

4.全课小结:这节课你学到了哪些知识?(看书、释疑)

5.思考题.

求阴影面积?单位:cm2

(多种方法解答)

板书设计:

长方形的面积课件 篇5

导学内容

导学内容(西师版)三年级下册第40~41页例1、例2,课堂活动第1题,练习七第2题。

教学目标

1本历长方形面积计算公式的探索过程,培养探索和探索能力。

2闭莆粘し叫蚊婊计算公式,能运用公式计算长方形的面积。

3痹诮饩鲇朊婊有关的实际问题中,能进行有条理的思考。

导学重难点

引导学生经历长方形面积计算公式的探索过程。

教具、学具准备

1cm2的正方形卡片若干张,。

导学过程

一、引入新课

教师:什么叫面积?

说一说下面图形的面积是多少。(1小格是1cm2)

出示下面图形:

教师:你知道这个图形的面积是多少吗?

学生可能无法回答,教师可以引导学生猜一猜,并把猜的结果记录在图的旁边。

教师:同学们用估计的办法测得了这个图形的面积,但不精确,如果要准确知道它的面积可以怎么办?

学生如果不能回答,教师可以引导:长方形的周长可以测量、计算,那长方形的面积呢?

(板书课题:长方形面积的计算)

二、探索长方形面积计算公式

1庇檬格子的办法探索面积计算公式

教师:用1cm2的正方形摆长方形,至少要多少个?(2个)

学生取几个正方形摆成一个长方形,边摆边思考:用了几个正方形?摆出的长方形的面积是多少cm2?

教师:用5个、10个、18个小正方形分别摆成一个长方形,可以怎么摆?请根据你的操作填写下表。

学生逐一填表后展示汇报。

姓名正方形个数(个)

面积(cm2)长(cm)宽(cm)

提问:从上表中你发现了什么?

学生可能回答:

学生1:长方形的面积与正方形的个数有关,用了多少个小正方形,拼成的长方形的面积就是多少cm2。

学生2:与长方形的长有关,长越长,长方形的面积越大。

学生3:不,与宽也有关,如果宽很短的话,长方形的面积不一定大。如…

教师:也就是说长方形的面积与它们的长和宽都有关系,对吗?

2庇酶哺堑陌旆剿鞒し叫蔚拿婊计算公式出示下面的几个长方形:

学生分组用1cm2的正方形去覆盖上面3个图形,并填下表:

图形长(cm)宽(cm)面积(cm2)

ABC

教师:从刚才的探索中,你又发现了什么?通过交流,尽量让学生感受到长方形的面积与长和宽有关系。

教师:根据上表看一看,算一算,长方形的面积与长和宽有怎样的关系?

学生:长乘宽就等于面积。

教师:是这样的吗?再算一算学习例1时拼的长方形,看是否都具有这一关系?

教师:请你们大胆猜一猜,可以怎样计算长方形的面积?

学生:长方形的面积等于长乘宽。

(板书:长方形的面积=长×宽)

3毖橹し⑾

(1)数一数,算一算,填一填。

小正方形的边长为1cm,

长方形面积是()每格1cm2,面积是()

小正方形的边长为1cm

长方形面积是()

(2)算一算。

三、巩固应用

1奔扑阆旅嫱夹蔚拿婊

2蓖瓿闪废捌叩2题

让学生完成练习七第2题。

3笔导活动:测量并计算面积物体名称课桌面数学书面文具盒面黑板面长宽面积

四、反思

教师:这节课你们学习了什么?有哪些收获?还有什么不明白的问题?

本文的网址是//m.zfw152.com/a/5601085.html

相关推荐
最新更新
搬家主持词4篇

搬家主持词 07-09

梯形的面积课件十一篇

04-10

导师心得简短

导师心得 07-09

异地短句200句

异地短句 异地情话短句 07-09

幼儿园数学教案12篇

幼儿园数学教案 07-09

梯形的面积课件分享10篇

04-10

小组长的发言稿热门

小组长发言稿 07-09

2023年度学习计划(精华8篇)

年度学习计划 07-09

早上好祝福语优美句子70句

早上好祝福语优美句子 早上好祝福语句子 07-09

感悟生命的句子

感悟生命句子 07-09

医院实习自我评价7篇

医院实习自我评价 07-09

推荐访问

全部分类