<

趣祝福 · 范文大全 · 比例课件

比例课件(精选十五篇)

时间:2024-07-22 比例课件

比例课件 篇1

一、说教材

1、教学内容:

这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,然后再设未知数,列出等式(方程)解答。例6教学是反比例意义的应用,反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答的。那么本节课学习内容是在原有解法的基础上,通过自主参与,发现、归纳出一种用反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

成正、反比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

2、教学目标:

(1)、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解。

(2)、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

(3)、培养学生的判断分析推理能力。

3、教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

4、教学难点:学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

5、教具:小黑板、课件

二、说学法

1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,探究解决有关基本应用题的解题思路和计算方法。

2、采取自主探究的学习方式,让学生通过看、想、思、说、动等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力。沟通知识间的联系。

三、说教法

(一)、联系生活,习旧引新:

新课程标准中指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学”,“教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值。”遵循这一理念,课始我设计了“生活用水、包装图书等信息,”让学生通过观察,并组织学生整理信息,判断题中的相关联的量成什么比例关系,为下面的解决问题打下坚实的基础。

数学源于生活,生活中处处有数学,类似归一、归总的实际问题生活中素材很多。学生在生活中也有用水收费和包装图书的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生在交流中提取有用的信息,为下面的探究呈现素材。

(二)、合作探索,领悟内涵:

1、感知用比例解决问题的关键。

(1)我先组织学生用学过的方法自主解决问题,让学生对题中的数量关系有了初步的认识。

(2)接着让学生用学过的比例知识分析解答,我出示思考题,小组交流,并试着解决,让一部分学生体会到成功的感觉,通过订正,让大家领会到解决问题的方法。

“什么都可代替,唯有思维不可代替”。在这当中教师要逐渐打开学生独立思维的闸门,激发学生的求知欲,放手让学生独立思考,大胆实践,自己解答。在此基础上教师再给以指点和总结,这样做的目的,学生理解问题的水平不一,叙述表达方式不同,在解答问题的过程中会出现这样或那样的错误,这并不重要,重要的是让学生根据自己已有的知识和经验,参与到新知识学习的过程中,在分析问题和解决问题的能力上有所提高。体现了策略的多样化。

2、在比较中体会知识的实质。教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。在学生充分小组交流的基础上,引导学生形成有价值的发现和体会。

3、练习的设计有层次性。

变式练习的设计,紧扣例题,让学生在熟悉的比例关系中,进一步掌握用比例解决问题的方法,紧接着完成书中的做一做,让学生在独立完成中,评价自己的学习情况,并鼓励学生发现新的问题,有价值的问题。

比例课件 篇2

教学目标:

1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

教学重点:

掌握解比例的方法,会解比例。

教学难点:

应用比例的意义和基本性质解决生活中的实际问题。

教法设计:

讲解法、对比法、归纳法。

学法设计:

合作交流、对比归纳。

教学准备:

多媒体课件

教学过程:

一、复习铺垫,引入新课

(一)汇报预习案上复习题。

1、解下列方程.

χ=×

2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

6∶10和9∶155∶1和6∶2

3、在括号里填上适当的数。

3:9=:156:0.8=():4

可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。(板书课题)

看到课题你想了解些什么?(出示学习目标)

二、自主探究,合作交流,完成预习案。

三、汇报展示,引导点拨

1、从题目中你获得了哪些信息?

2、理解题意

根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为( ):320=1:10

根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。(填等或不等):

3、列式解答

指名板演,老师点拨。

小结:这种方法叫做用比例解决实际问题。

4、小结解比例的方法及应注意的问题。

四、知识检测,达标提升

1、解下面的比例

2、解下面的比例

(1)8︰12=X︰45

(2)0.4︰X=1.2︰2

3、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。这个将军俑的实际高度是多少?

五、拓展延伸,总结激励

作业布置:

练习八7、10题。

板书:解比例

1、什么叫做解比例

例:1.5:2.5=6:X

解2.5×6=1.5X

1.5X=15

X=10

X:320=1:10

解10X=320

X=32

比例课件 篇3

教学目标:

性质,能正确迅速地解比例、化简比和求比值。

2、进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以及根据比例尺求图上距离和实际距离。

教学重点:理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。

教学难点:能理清知识间的联系,建构起知识网络。

教 法:情境导入法、引导法

学 法:小组合作、同桌交流、自主探究、归纳法、练习法

教学具准备:小黑板

教学过程:

一、口算大比拼。

师:经过一个多月的口算训练,相信,同学们的口算能力一定提高了许多,现在咱们进行口算大比拼,看谁算的又对又快!

出示小黑板:

1÷0.125= 2.5×4= 0.92= 3.4÷0.17= 1-0.14=

3/5×10/3= 15÷5/8= 8-3/5= 1/4+2/5=

(1)指名个别提问。

(2)集体订正。

师:看来同学们的口算能力确实有很大地提高,那么相信,今天这节课大家也能上出精彩,上出自信的,大家有这个信心吗?

二、创设情景,导入复习:

师:现在老师这里有两个数字宝宝2和3,你能用一个式子来表示他们的关系吗?

(1)学生自由回答。

(2)选择有价值的板书:2:3 2/3 和2÷3

导入:那么今天我们就一起来和比、比例这两个老朋友叙叙旧。

板书课题:比和比例的复习

三、回顾整理,建构网络:

(一)比和比例联系与区别。

1、自主交流。

(1)咱们都知道2:3是一个比的形式,那么究竟什么叫做比呢?我们还学了比的哪些知识呢?

(2)学生自由回答。

(3)你能举例说出一个比例式吗?我们都学习了比例的哪些知识呢?

(4)指名回答。

2、小组合作交流。

(1)共同看我们所举的比和比例的例子,你能从中发现他们的相同点和不同点吗?请你用自己喜欢的方式吧比和比例的有关知识进行归纳整理。

(2)小组合作交流。

3、全体交流。

指名几组学生代表在全班交流。

4、集体归纳整理。

师:刚才同学们用自己喜欢的'方法对比和比例的有关知识进行了归纳整理,方法都不错,整理的很认真,那么比和比例有哪些区别,我们再来一起整理一下好吗?

师生共同整理比和比例的区别。

比例

意义

两数相除又叫两个数的比

表示两个比相等的式子叫做比例

各部分名称

0.9 : 0.6 = 1.5

前项 后项 比值

内 项

2 :3 = 6 :9

外 项

基本性质

比的前项和后项都乘上或除以相同的数(比值不变

在比例里,两外项之积等于两内项之积。

整理完后,教师小结:从表格中我们能清楚地看出比和比例的区别。

(二)比和除法、分数的联系。

分数有哪些联系?

(2÷3和2/3让生说一说。

(2)指名举例说明他们的关系。

2、师:比的基本性质有什么用处?引入化简比。

(1)师:化简比和求比值是一回事吗?我们通过例子来说明吧。

(2)师板书4:2/5分别让学生化简比和求比值。通过计算让学生说出求比值和化简比的不同。

(3)师问:比例的基本性质有什么作用?

(求出比值,并化简比。45:72 11.2 : 56

(2)解比例: 2:8=9:X 1.25:0.25=X:1.6

(5)指名板演,其他在练习本上做。

(6)集体评价。

(三)比例尺的有关知识。

1、什么叫比例尺?我们学过的比例尺有哪几种形式?

图上距离、实际距离?

四、重点复习,强化提高:

师:现在老师这儿有一些数学问题,你们想用你们刚才复习的知识来解决它们吗?

(一)、心中有数。

2、甲数是乙数的6倍,那么甲数:乙数=( ):( )

,它们的

比值是( )。

4、如果A×3=B×5,那么 A:B=( ): ( )

(二)、慎重选择。

A、5/7

A、 1/2

组成比例。

A、 2/5 : 1/2

(三)、请你判断。

(四)、爱的奉献。

四川大地震牵动着每一位中国人的心,我们进修附小全体师生慷慨解囊献出自己的爱心,97名老师捐款8000元,2200名学生捐款38000元,写出老师捐款数和人数的比以及学生捐款数和学生人数的比?

五、当堂检评,完善提高。

1、填空:

①根据右面的线段图,写出下面的比。

甲数:|_____|_____|_____|_____|

乙数:|_____|_____|_____|

(1)甲数与乙数的比是_______

(2)乙数与甲数的比是_______

(3)甲数与甲乙两数和的比是_______

(4)乙数与甲乙两数和的比是_______

②—:。如果前项乘上。如果前项和后项都除以。

③把(:(化成最简整数比是( ):( ),它们的比值是( )。

④如果A×:( )

如果a:

2、P63第2题,解比例。

(其他在练习本上做。

(2)集体评价。

六、全课总结。

同学们,上了这节课你们有什么收获和感受?你对自己的表现有什么评价?

七、板书设计:

比和比例复习与整理

2:3 2/3 和2÷3

2:3=6:9

(一)比和比例联系与区别。

(二)比和除法、分数的联系。

(三)比例尺的有关知识。

比例课件 篇4

《正比例与反比例》教学设计

教学内容:

六年级下册总复习83—85页《正比例、反比例》。 教学目标:

(一)知识目标:

(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

(2)通过具体问题的认识进一步认识正比例、反比例的量。

(二) 数学思考与解决问题

通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

(三)情感态度

培养学生认真思考的习惯,学会区分正反比例。 教学重、难点:

(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。 教法学法

自主复习、小组交流、全班交流、互帮互学 教学准备

表格、课件、小黑板 教学过程

一、情境创设,导入复习

1、判断下面每题中的两种量成什么比例关系?

①速度一定,路程和时间( ) ②路程一定,速度和时间( )

③单价一定,总价和数量( ) ④全校学生做操,每行站的人数和站的行数( )

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

指名学生口答,老师板书。

二、回顾整理,构建网络

(一)比的知识:

1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2.说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。 3.完成教科书p83“回顾与交流”的3题

两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。

(二)比和分数、除法的联系

出示:a∶b=( )(( ))=( )÷( )(b≠0)教师问: 1.你会填写这个的等式吗?学生填好后,再问: 2.你的根据是什么?(比和分数、除法的联系) 3.那么比和分数、除法的联系是什么?它们的区别呢? 为什么不能等于0?小组议一议,再交流。

5.谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)

(2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示学生不同的结果。)

(三)比例尺的知识

什么是比例尺?

(四)正比例,反比例的知识:

(1) 小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。

(2) 班内交流,全班分享

(3) 全班同学进行优化, 形成知识网络图。

变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺 三:重点复习,强化提高: 1. 一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

(1)学生独立思考

(2) 同桌交流 3)全班交流

a自然语言 b 列表 c 画图 d 关系式 2. 举出生活中正、反比例的例子 3. 完成课本84页巩固与应用 独立完成,班内交流。

四.自主检测,完善提高:

判断并说明理由

(1)出油率一定,香油的质量与芝麻的质量。

(2) 一捆100米长的电线,用去的长度与剩下的长度。

(3) 三角形的面积一定,它的底和高。

(4) 一个数与它的倒数。

五、完成后班内交流,这节课你有什么收获?

比例课件 篇5

【教学内容】:

人教版小学数学六年级下册(p

【教学目标】:

1、掌握用正比例知识解答含有正比例关系问题的步骤和方法。

2、使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

3、发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。

【教学重点】:

1、判断题中相对应的两个量和它们的比例关系。

反比例的关系列出含有未知数的等式,运用比例知识正确解决问题。

【教学难点】:

1、掌握用比例知识解答解答应用题的步骤和方法。

2、理解“用比例解决问题”的结构特点,从而构建知识结构。

【教学准备】:

多媒体课件

【教学过程】:

一、回顾旧知

1、判断下列每题中的两个量是不是比例,成什么比例?为什么?

(1)购买课本的单价一定,总价和数量。

(2)总路程一定,速度和时间。

1

(3)零件总数一定,生产的天数和每天生产的件数。

(4)总钱数一定,用去的钱数和剩下的钱数。

2、根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样的速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

【设计说明】:由旧知识引入,让学生巩固正、反比例的知识点,熟悉正、反比例的关系式,为新授支起“点路灯”。

二、揭示课题、探索新知。

(一)教学例5。

1、课件出示例5情境图,

问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

(1)学生自己解答,然后交流解答方法。

(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)

【设计说明】:这例题是学生以往学过的归一问题。这样做,让学生经历旧知的梳理过程,更能使学生明确旧、新解题思路的异同,从而达到整合学习的效果。

(2)引入新课:像这样的问题也可以用比例的知识来解决.g

(3)学生思考和讨论下面的问题:

1、题目中有哪两个量?

2、这两个量是什么关系,为什么?

3、题目中的定量是哪个量。

(反馈

(5)根据这样的比例关系,列出比例:

根据上面的数据,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。 板书: 解:设李奶奶家上个月的水费是元。

12.8 :8 =:10

8=12.8×10

= 128÷8

=16

答:李奶奶家上个月的水费是16元。

(6)将答案代入到比例式中或跟算式方法比较结果来进行检验。

【设计说明】:这一环节的设计是本节课的关键所在。课件出示之后,让学生独立思考,解决问题,由表象的学习引入的新授课的殿堂之中来,让学生十分清楚用比例知识解决问题的全步骤;再让学生经历小组讨论环节,让优生从能做升华到会讲,达到知识的整合。

2、即时练习,巩固提高。

同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

出示“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”让学生进行变式练习。

(二)教学例6。

1、课件出示例6的情境图,让学生说出题意。

2、师:这个问题同学们一定会解决!

(1)自主解决问题。

板书:解:设要捆包。

30= 20×18

3

=360÷30

= 12

答:要捆12包。

3、例题改编。如果要捆15包,每包多少本呢?

4、师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

【设计说明】:让学生自主学习,把空间让给学生,把主动权交由学生,可以让学生体验到跳一跳摘到桃子之后的快感。达到学生真正的“主”起来,当学生遇到问题时教师要及时的指导。

(三)概括总结。

师:下面我们一起来概括一下用比例解决问题的步骤:

1、设要求的问题为X;

2、判断题目中哪个量是一定的?另外两种量成什么关系?

3、列比例式;

4、解比例,验算,作答。

【设计说明】:组内交流之后,选派小组上台展示交流,可以锻炼学生的胆量和有序组织语言的能力,真正做到让学生知其所以然。可以让学生形成完整的知识脉络体系。

三、巩固提高。

2题。

4、7题。

四、全课总结。

今天你们有什么收获?

比例课件 篇6

正反比例应用题教学设计

教学目的:1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。 教学过程:

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

一、

检测题

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的量。大家一定要把握概念的实质,灵活运用。

二、练一练

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)

生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产X台,360/3=X/27 X+360。(板书:360/3=X/27 X+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27 天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成?

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

教师订正时请同学讲述解题思路,并板书方程:100X=80*20。

将原题变成:

b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务?

c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务?

d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务?

e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务?

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

三、巩固练习

1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的跳绳多少根?(用算术和比例两种方法)

2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成?

3.根据题中所给的条件,你能提出什么问题?并列出比例式。

一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,

小结:刚才这道题同学们所提的问题有:(1)完成计划需要多少天?(2)余下的任务还需要几天?(3)可比计划提前几天完成?(4)全月实际可生产多少台?(5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。

4.用正、反比例两种方法解答下题。

修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完?

教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。

四、全课小结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

比例课件 篇7

《比例的意义》教学设计

教学内容:比例的意义 教学目标: 知识与技能:

使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

过程与方法:

在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。

情感态度与价值观:

提高学生的认知能力。通过了解国旗的比例渗透爱国主义思想。 教学重点:比例的意义。

教学难点:找出相等的比组成比例。 教具;教学挂图。 教学过程:

一、旧知铺垫

1、什么是比? (1)、一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1 (2)、小明身高米,小张身高米,写出小明与小张身高的比。

:=12:14=6:7

2、求下面各比的比值。

12:16 : : 10:6

二、探索新知

1、教学例1。 (1)、观察课文情境图。(不出现国旗长、宽数据) ①、说一说各幅图的情景。 ②、图中有什么相同之处? (2)、你知道这些国旗的长和宽是多少吗?测量教室里国旗的长、宽各是多少厘米?

(3)、(指教室里的国旗)这面国旗的长和宽的比值是多少?

3418

学生回答教师板书: 60:40=

(4)、操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

学生回答长、宽比值。

2.4:=

两面国旗的长和宽的比值相等。

板书::=60:40 也可以写成=

(5)、什么是比例? 在这一基础上,教师可以明确告诉学生比例的意义,并板书: 表示两个比相等的式子叫做比例。 (6)、找比例。 师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例? 过程要求:

学生猜想另外两面国旗长、宽的比值。 求出国旗长、宽的比值,并组成比例。 汇报。

1033= 15:10= :=15:10 5:=: .= = 101.如:5:

2、做一做。

完成课文“做一做”。 第1题。 (1)、什么样的比可以组成比例? (2)、把组成的比例写出来。 (3)、说一说你是怎么找的。 (4)、同学之间互相交流,检验各自所写的比例。 第2题。

学生独立写比例,看谁写得多。 同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3、课堂小结。

(1)、什么叫做比例? (2)、一个比例式可以改写成几个不同的比例式?

三、巩固练习

完成课文练习六第1~3题。

四、作业

完成《练习册》第12页的练习。 课后反思:

比例意义教学设计

反比例教学课件(共6篇)

比意义,说课稿,,,教学设计,教学反思

案例教学课件

人教版比意义教学设计

比例课件 篇8

《比例的认识》教学设计

(2016-03-03 16:37:00) 转载▼

分类: 教学设计2015-2016第二学期六

首案编写者:李芳芳

教学内容

比例的认识 教材16——18页 教学目标 知识技能

结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。 数学思考与问题解决

经历自学和合作的过程,体验学习的快乐。 情感态度

培养学生自主参与的意识,培养学生观察、分析、概括的能力。 教学重点

通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。 教学难点

通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。 教法学法

讲授与自学相结合、自主学习法、合作学习法 教学准备

多媒体课件、学生自学卡 教学过程

一、回顾旧知,复习铺垫 1.复习学过的有关比的知识。 2.谈话引入新课。

二、引导探究,学习新知 1.教学比例的意义。 同学们还记得这些图吗?请联系比的知识,想一想怎样的两张图片像,怎样的两张图片不像?

你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。 写出长与宽的比,并求出比值。完成学习卡的第一题。 2.初步感知比例的意义。 (1)交流反馈。 (2)引出比例的意义,

因为这两个比的比值相等,所以我们可以写成一个等式,6:4=12:8,也可以写成6/4=12/8 师:像这样表示两个比相等的式子叫做比例。(板书:比例) 3.组织看书,认识名称

我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

【设计意图:让学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。】 4.利用新知,学以致用

师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例? (小组讨论,交流汇报) 生汇报

【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】 5.内化意义,提高认识

(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件? (2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?” 6.引申应用

学生自学数学书的16页的问题三。 7.比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢? 8.教学比例的基本性质 (1)教学比例各部分的名称。

教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P17,看看什么叫比例的项、外项、内项。 指名让学生指出板书中的比例的外项、内项。 (2)教学比例的基本性质。

教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书: 两个外项的积是80×5=400 两个内项的积是2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来? 最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样? 学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

三、巩固深化,拓展思维。 (题略)

四、全课小结,提高认识

通过这节课的学习,你们都有哪些收获?

板书设计:

比例 比 = 比

12︰6 = 8︰4 ( 12/6=8/4) 内项

外项 教学反思:

比例的意义是学生对比的意义、性质和比值的意义以及求比值的方法有了较充分认识的基础上进一步学习的,掌握这部知识将为进一步学习正、反比例的意义,用比例的方法解应用题奠定了坚实的基础。所以这一概念的建立很重要。

一、创造有效学习情境,激发学习主动性

1.在备课之前,我仔细阅读了课标,教学参考书,以及各种参考资料,不过对情境图的处理我还是大胆的对它进行了创新:那就是通过独立完成“学生学习卡”的第一题,(这里有二层意思,一是复习旧知,二是为比例的意义做准备。)让他们通过计算和归纳,将比或比值相等的比写在一起,把比或比值不相等的比的写在一起,让数据来说话,比值相等的图片就像,比值不相等的图片就不像。在学生充分感知的基础上,揭示比例的意义。

2.当引出比例的意义后,我又将自学与讲授相结合。让学生自学16页的“认一认”,完成学习卡的第二题,这样做既符合“学法建议”里的“以学生自学为主,理解比例的意义”又“采用小组合作学习的形式,让学生自学成为习惯,合作成为常态。”我在这个环节特别安排了两组“数字相同,而组成的比例的不同”这样的例子,旨在通过这个练习给大家传递一个信号,“相同的四个数,由于不同的数字排列,比值不同,会组成不同的比例。”这个目的达到了。学生汇报完毕后,我让小组长到讲台上给大家讲解比例的内项和外项,检验他们的学习成果。

3.多次运用学习卡的“第一题”的数据,刚才“我们是纵向比较得出这几张图片像的理由的,其实我们还可以横向比较,比如:图片A的长与B图片的长比是6︰3,比值是2,A图片与B图片宽的比是4︰2,比值是2,因此他们也可以组成比例6︰3=4︰2”,这样设计的原因之一是:充分运用主题图的作用,原因之二是:主要体现同一个图形的长与宽的比,也可以是宽与长的比,每两张图片的长与长的比,宽与宽的比,根据两个相等的比可以组成多个比例。原因之三是通过系统的比较,传递给学生一个信号,考虑问题可以多方位思考。 4.通过“思考与讨论”环节,学生重温了刚刚学过的比例的知识,又将感性知识上升到了理性思考,小组间的互相交流与讨论,让每个孩子成了学习的主人特别是当学生表述完,我都听着有点别扭的时候,我及时调整思路,让“小组长”到讲台上边举例边见解,当她自己觉得这样行不通的时候,他们就会想办法解决自己的问题。给小组长展示的平台,他们的积极性会更高,学生在学生过程中感受到成功的喜悦,参与课堂的主动性被充分调动。

二、变“教教材”为“用教材——拓宽教材”

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。两个地方我觉得用得比较好:

1.这节课中我将情境图分“两次运用”,第一次先指定学生找“长与宽的比”,这样做,容易让学生迅速找到“比值相等的比,”——引出比例的意义,因为前二十分钟是学生学习的黄金时间,概念的教学需要让学生把握它的实质;第二次是当学生知道比例的意义,初步了解到判断两个比是否能组成比例关键看他们的比值是否相等,让他们再去数据中找比例,这样分散了难点,突出了重点。

2.“ 蜂蜜水是否一样甜”课本上给出了两种不同的比例,通过小组合作学习,他们找出了另外两种,将学习卡的第二题做了完善和补充。

比例课件 篇9

教学内容:

人教版教材小学数学六年级下册第三单元的第四课时《成反比例的量》

教学目标:

1、理解反比例的意义,能正够判断两个量是否成反比例。

2、结合具体问题,经历认识成反比例的量的过程。

3、使学生在自主探索合作交流中体验成功的愉悦,进一步树立学习数学的自信心。

教学重点:

理解反比例的意义,能正够判断两个量是否成反比例。

教学难点:

引导学生研究两种相关联的量的变化规律,能正够判断两个量是否成反比例。

教学过程:

一、口算训练:

0.01×50=720÷800=816-315=0.42÷6=

50×0.03=30×0.05=11+0.05=0.3×1.1=

8.9-1.2=8.2-0.7=460×10=322-85=

130×50=0×0.01=7.2-3.5=0.2×60=

288÷12=147÷30=790+104=0.12×5=

150-7.4=720÷300=1.4×0.6=

二、情境引入:

引入新课:我们已经学习了成正比例的量,谁能说说什么是成正比例的量?用字母表示正比例关系。

让学生举例描述成正比例关系的两个量。

师:我们已经能根据成正比例的量的特征判断两种量是不是成正比例。那么今天我们学习成反比例的量。

课件出示情境图:把体积相同的水倒入底面积不同的圆柱形玻璃杯中。

师:猜一猜水面的高度会不会相同?

生:不相同。

师:高度的大小与什么有关?

生:高度的大小与量杯的底面积有关,底面积大水面就低,底面积小水面就高。

师:究竟是不是这样呢?我们来验证一下!

三、建构模型:

1、教学例3:

师:出示量杯的底面积和高的数据。

高度(cm)302015105

底面积(平方厘米)1015203060

体积(立方厘米)

师:你能求出水的体积吗?

生:用底面积乘高。都等于300立方厘米。

学生观察表内数据,小组讨论回答下面的问题。

(1)表中三个数量中哪个量不变?

(2)三个数量之间有什么关系?

学生汇报:水的高度随着底面积的变化而变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定。

师引导学生总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

追问:如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系式怎样表示?学生自己尝试总结汇报:x×y=k(一定)

师:看刚才的算式里x、y、k分别代表什么?

生:x代表底面积y代表高k代表体积。

2、生活中还有哪些成反比例的量?

追问:我们该如何判断两个量是否成反比例呢?

生回答,补充完整。

四、解释应用:

1、判断题中的两个量是否成反比例,并说明理由。

思考题:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?

2、做一做:运一批货物,每天运的吨数和需要的天数如下表。根据表回答下面的问题:

(1)表中有哪两种量?它们是不是相关联的量?

(2)完成表格后,你有什么发现?

五、课堂小结:

你有什么收获?

学生汇报。

师引导学生比较正、反比例的相同点和不同点。

比例课件 篇10

基于课程标准的《比例的意义》教学设计

【教案背景】 我国的课程实施或教学主要有三种类型:基于教师经验的课程实施、基于教科书的课程实施和基于课程标准的教学。我们应该从基于教师自身经验或教科书的课程实施,走向基于课程标准的教学,即教学目标源于课程标准、评估设计先于教学设计、指向学生学习结果的质量,使自己能够“像专家一样”整体地思考标准、教材、教学与评价的一致性问题。

【教学课题】 义务教育课程标准实验教科书(人教版)六年级下册数学,第32~33页的例

1、练习六和做一做相关习题。 【目标分解依据】

1、基于课程标准:

在实际情境中理解比及按比例分配的含义,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。积极主动探求给定事物中隐含的规律或变化趋势,学生能主动参与数学活动,综合运用所学知识获得解决简单实际问题的活动经验和方法,初步感受数学知识间的相互联系,感受数学思考过程的条理性和数学结论的确定性,体会数学的作用和价值。

2、基于教材安排:

教材安排了五个活动:第一,使学生通过现实情境体会比例的应用。第二,四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的,由此引入比例意义的教学。。。第三,依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源。第四,为以后学习图形的放大与缩小做铺垫。第五,有助于在教学中渗透爱国主义教育。

3、基于学生实际:

本节内容是在比的知识基础上教学的,学生在学习本节课之前,对比的意义和性质、按比例分配等知识已经积累了一些经验,少部分学生已经通过其他方式知道比例的意义,能应用比例的意义判断两个比能否成比例,但理解的并不透彻,大部分学生对于新知比较生疏。因此,在学习本课时,通过五个活动,让学生掌握比例的意义,并根据这一知识解决生活中的简单问题,在问题中发现比例,进行观察、比较、分析,从而抓住比例概念的实质,更好的区分“比”和“比例”这两个概念,深入理解和应用比例的知识,承上启下,为后面的学习打好基础。

【教材分析】 认识比例的现实素材是图形的放大或缩小,比例能揭示图形放大或缩小的数学含义,而且解决图形放大或缩小、比例尺的实际问题要应用比例的知识。本单元教学“数与代数”领域的比例知识,还教学“空间与图形”领域的图形放大或缩小,以及比例尺的知识,把两个领域的内容融合能发挥数形结合的作用,提高教学效率。 中

【评价设计】

1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、选择性反应评价:运用选择题检测“理解比例的意义”、“组比例”的掌握情况。 【基本评价题目】

1、下面各个比能与2:9组成比例的是( ) A、9:2 B、: C、1: 检测:学生对“理解比例的意义”、“组比例”的掌握情况。

2、写出两个比值是的比,并组成比例。

检测:学生对组比例的掌握情况。

3、比表示两个数( );比例表示( )。

检测:学生对比喻比例区别的掌握情况。

【教学目标】 使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

【教学重点】 比例的意义。

【教学难点】 找出相等的比组成比例。

【教学方法】 在学生已有的比的知识基础上,结合具体实例,引出比例的意义。引出比例意义后,还应回到实例中,体现从具体──抽象──具体这样一个认知过程。 【教学过程】

一、回忆:

1、什么是比? (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

300:5=60:1 (2)小明身高米,小张身高米,写出小明与小张身高的比。 :=12:14=6:7 2.求下面各比的比值。

12:16 : : 10:6

二、探索新知 1.教学例1` (1)初步感知相等的比,课件呈现教材情境图。(不出现国旗长、宽数据)①说一说各幅图的情景。

②图中有什么相同之处?

你知道这些国旗的长和宽是多少吗?

出现各图中国旗的长、宽数据。

测量教室里国旗的长、宽各是多少厘米。

(2)感知比例式,(指教室里的国旗)这面国旗的长和宽的比值是多少?操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

(3)什么是比例? 在这一基础上,教师可以明确告诉学生比例的意义,并板书。 (4)小组找比例。

还能找出其它的比吗?并组成比例。 (5)汇报。 2.做一做。

完成课文“做一做”。

第1题。

什么样的比可以组成比例?

把组成的比例写出来。

说一说你是怎么找的。

同学之间互相交流,检验各自所写的比例。

第2题。

学生独立写比例

同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。 3.课堂小结。 (1)什么叫做比例?

(2)一个比例可以改写成几个不同的比例式?

三、巩固练习

完成练习六第1~3题。

四、总结,作业 【教案中涉及资源】

【教学反思】这节课,突出了常态下如何扎实有效的组织学生学习好一节课的内容,使数学学习与现实生活紧密联系,使学生认识到我们的数学学习是有用的,它能解决我们实际生活中的很多问题,从而提高学生学习积极性,从学生掌握知识、课堂参与情况来看,整节课的设计还是比较适合学生的思维发展。在结构上,注重了前后呼应,使整堂课也显得比较紧凑。

根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。

比例课件 篇11

【教学目标】

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

【教学重难点】

重点:成正比例的量的特征及其断方法。

难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

【教学过程】

一、四顾旧知,复习铺垫

商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

学生独立完成后师提问:你们是怎样比较的?

生:我先求出每种袜子的单价,再进行比较。

师:你是根据哪个数量关系式进行计算的?

生:因为总价=单价×数量,所以单价=总价÷数量。

师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

二、引导探索,学习新知

1、教学例1,学习正比例的意义。

(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

2、计算表中的数据,理解正比例的意义。

(1)计算相应的总价与数量的比值,看看有什么规律。

(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

(数量、单价之间的关系表示出来。

(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

3、列举并讨论成正比例的量。

(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

两种量中相对应的两个数的比值一定,这是关键。

4、认识正比例图象。(课件出示例1的表格及正比例图象)

(1)观察表格和图象,你发现了什么?

(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

无论怎样延长,得到的都是直线。

(3)从正比例图象中,你知道了什么?

生1:可以由一个量的值直接找到对应的另一个量的值。

生2:可以直观地看到成正比例的量的变化情况。

(4)利用正比例图象解决问题。

不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。

三、课堂练习:

1、P46“做一做”

3~7题

比例课件 篇12

正、反比例复习课导学案 红土学校 刘丽花

复习内容: 正、反比例的应用。 学习目的:

1.通过练习,进一步理解和掌握正、反比例意义及应用题的解题规律。 2.通过一题多解等形式,由浅入深,由易到难,培养学生思维的灵活性。 学习重点:

找出相关联量中相对应的两个数。 学习难点:

用两个变量来表示定量。 学习过程: 一.温故知新。 问题一

正比例和反比例的意义有什么共同点和不同点? 问题二

用比例解决实际问题可以归纳为哪几个步骤? 二.巩固练习。

(一)。下面各题里相关联的两种量成不成比例,如果成比例,成什么比例?

1.总价一定,单价和数量。 ( ) 2.比例尺一定,图上距离和实际距离。 ( ) 3.全班人数一定,出勤人数和缺勤人数 。( ) 4 .一个圆的直径和周长。 ( ) 5.一根铁丝剪成同样长的段数与每段的长度。( )

(二)选择题 1.从南京到南通,汽车车轮的直径与转数( )。

① 成正比例 ② 成反比例 ③ 不成比例 2.当( )时,x 和 y 成正比例。

① x × y = k (一定) ② = k(一定)

③ x + y = k (一定)

3.步测一段距离,每步的平均长度和步数( )。

① 成正比例 ② 成反比例 ③ 不成比例

(三)比一比,想一想, 你会列比例吗?

(1)黎明发电厂运来一批煤,计划每天烧6吨,可以烧54天。实际每天比计划节约了2吨,这样可以烧几天?

(2)电视机厂要生产640台电视机,前8天共生产了总任务的10%。照这样计算,后来又生 产18天,又生产了多少台?

三.拓展练习 你看我多棒 你会列几种比例解?

1.用一台打字机打字,6小时打36页,照这样计算,如果再打4小时,一共可以打字多少页?

想挑战吗?

奇怪!一道题同时可以用正反两种比例解!你相信吗?

2.一辆汽车原计划每小时行80千米,从甲地到乙地要小时。实际小时可行驶36千米。照这样的速度,行完全程实际需要几小时?

四.小结

通过本节课的学习,自己有什么收获。

正比例教学设计

正比例教学反思

《正比例函数》教学反思

比与比例教学设计

正比例函数教学设计(共5篇)

比例课件 篇13

“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。

我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。

数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

《比的应用》这一内容,教材范例是“一个农场在100公顷的地里播种大豆和玉米。播种面积的比是3:2。两种作物各播种多少公顷?”虽然是取材生活例子,但与学生的生活经历有一定的距离。按照教材范例上下来,整节课学生听的是很认真,也会做一些有关按比例分配的应用题。但学生整节课的表情单板,参与情绪不高,学习过程显得机械,大部分学生既不知所学的数学从何而来,更不知将走向何处。

比例课件 篇14

正反比例练习课教学设计

花都区赤坭镇莲塘小学 关永谊

教学目标:

1、通过正比例和反比例的对比练习,加深对正比例和反比例意义的理解,提高判断能力。

2、通过讨论与交流,体会正、反比例的知识与日常生活的密切联系,并利用正、反比例的意义解决实际问题。

教学重点:进一步掌握正、反比例关系的意义。

教学难点:正确应用比例知识解答基本的正、反比例应用题。 教具学具:课件 教学过程:

一,分层次设计练习。

(一)、第一层次,基本性应用练习的设计

1、判断下面每题中的两种量成什么比例关系。 (1)、一个因数一定,积和另一个因数; 积一定,一个因数和另一个因数。 (2)、平行四边形的面积一定,它的底和高。 (3)、货物的总吨数一定,每次运货的吨数和次数。 (4)、每袋茶叶的千克数一定,茶叶的总千克数和袋数。 (5)、拖拉机每天耕地的公顷数一定,耕地总面积和天数。 问:判断两种相关联的量成什么比例,我们关键是看它们的什么?

2、揭题

我们可以应用比例知识解答相应的应用题,这节课,我们联系正、反比例应用题。出示:正、反比例应用题(练习课)

3、根据已知条件,将题目补充完整,使之成为用正或反比例解答的应用题,并列式。(口答) (1)、同学们做广播操,每行站15人,站了12行,( )?

(2)、100克海水可以晒出3克盐,照这样计算,( )?

4、对比练习:

(1)解放军战士刘刚从兵营骑马去马场,每小时行60千米,要3小时到达。如果每小时行72千米,几小时可以到达马场? (2)解放军战士刘刚从兵营骑马去马场,3小时行180千米,照这样计算,5小时行多少千米? (1)读题

(2)师:现在我们运用比例知识来解答这两道题,首先看第一题,请同学们找一找数量之间有怎样的关系式?两种相关联的量成什么比例关系? 逐步出示数量关系式——对应关系——列出等式。 (3)按照第一题的讨论方法思考第二题。

(4)比较:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?

(5)小结。板书: 判断比例关系

找出对应数值

列出等式解答

5、只列式不计算:(用比例知识解,写清解设„„)

(1)读一本故事书,小红每天读25页,要读12天;如果要10天读完,每天应读多少页?

(2)用同样的砖铺地,铺18平方米要用618块砖;如果铺24平方米,要用多少块砖?

(3)一间房子要用方砖铺地,需要用面积是9平房分米的方砖96块;如果改用面积是4平房分米的方砖要多少块?

(4)安装一条下水管道,15天安装了120米;照这样计算,20天能安装多少米?

(5)100克蜂蜜里含有克葡萄糖;照这样计算,千克蜂蜜里含有多少千克葡萄糖? ( 二)、第二层次,综合性应用练习的设计。

1、解决生活中的问题

把米长的竹竿直立在地上,量得它的影长是米,(1)同时量得学校旗杆的影长是米,学校旗杆高多少米?(2)量出自己身边一个物体的高度,你能不能求出它的影长?

2、知识间的联系

两个底面半径相等的圆柱,第一个圆柱的高是第二个圆柱的高的 。第二个圆柱的体积是60立方分米,第一个圆柱的体积是多少?

问:“ 第一个圆柱的高是第二个圆柱的高的 ”还可以怎么说? 思考:当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?

你能有几种方法解答?

说明:按照分数与比之间的联系,有些应用题可以用分数和比例知识采用不同的方法解答。

3、变式训练,加深拓宽

(1)选择正确的解法:仪器厂现有5台机器,每天可生产1800个零件;如果用8台同样的机器,每天可生产零件多少个? X=1800X5 :5= X:8 同桌讨论:(1)为什么选择B?(2)用A解为什么是错误的?(3)它是什么关系的应用题? (2)如果将上题改成“„„如果再增加8台这样的机器„„”,求每天可生产零件多少个?

(3)改上题问句为“每天可多生产零件多少个?”

(4)假如把上题条件再改为“„„用8台这样的机器,每天可多生产零件多少个?”

(三)、第三层次,创造性应用练习的设计。

1、一辆汽车从甲地开往乙地,按每小时40千米的速度,要行驶小时;实际3小时行驶了150千米,这样行驶完全程要几小时? 学生先独立思考列式,然后指名反馈。 同桌学生讨论各个算式。 师生集体讨论。

2、在含有铅375克和锡 237克的合金中,增加铅多少克,可使铅与锡的比为5:3?

二、拓展练习

1、4人小组活动。并做好记录。

找一找生活中还有哪些成正、反比例的例子,与同伴交流。 最后由小组汇报,全班交流。

2、学以致用。

(一)、判断. 1.一个因数不变,积与另一个因数成正比例.( ) 2.长方形的长一定,宽和面积成正比例.( ) 3.大米的总量一定,吃掉的和剩下的成反比例.( ) 4.圆的半径和周长成正比例.( )

5.分数的分子一定,分数值和分母成反比例.( ) 6.铺地面积一定,方砖的边长和所需块数成反比例.( ) 7.铺地面积一定,方砖面积和所需块数成反比例.( ) 8.除数一定,被除数和商成正比例.( )

(二)、选择.

1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )

A.成正比例 B.成反比例 C.不成比例

2.和一定,加数和另一个加数.( )

A.成正比例 B.成反比例 C.不成比例

3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).

A.汽车每次运货吨数一定,运货次数和运货总吨数. B.汽车运货次数一定,每次运货的吨数和运货总吨数. C.汽车运货总吨数一定,每次运货的吨数和运货的次数.

(三)、思考. 如果 , 和 成( )比例,则 ∶ =( )∶( )

四、总结

你有什么收获?总结规律:如:涉及加减关系、平方关系、立方关系不成比例等。

2011年4月12日

比例课件 篇15

一、说教材

《美术中的比例》一课属于“造型·表现”学习领域,主要内容是对《溪山行旅图》《维鲁维斯的人》以及《巴黎圣母院》等作品的分析,认识美术作品中的比例之美理解黄金比例。并能够巧妙的运用比例进行创作,感受美术作品中的奥秘。通过本课的学习明确比例是造型艺术中重要的形式美法则之一,提高学生的审美能力并培养学生实践的能力,养成严谨的学习态度,热爱生活。

二、说学情

五年级的学生对简单的美术知识有一定的积累并且对比例也有初步的认识,多数学生可以直观感受到作品中的比例美感。并且这个年龄的学生思维活跃、探知欲强,适时地讲解一些更加深入的美术比例知识,能够使他们更深一层次的感受美术作品中的奥妙,迸发出创作的火花,激发创作思维,感受美术造型的乐趣。

三、说教学目标

1.初步认识、了解美术作品中的比例,有意识的发现生活中存在的比例之美,并能够运用比例创作作品。

2.通过对生活中与作品中艺术形象的欣赏、测量、讨论,理解黄金比例的关系,并能够运用拼贴与绘画的方式创作一个花瓶。

3.认识美术与科学的关系,感受比例的形式美感,提高观察能力与动手能力,并养成严谨的好习惯。

四、说教学重难点

【重点】

认识黄金比例及其在生活中以及作品中的运用。

【难点】

运用比例知识设计一个具有美感的花瓶。

五、说教法、学法

为了创设轻松、幽默、充满智慧的课堂,真正走进孩子们的情感世界,我选择了情境教学法、引导发现法,并利用多媒体课件演示等教学方法。

在教学过程中,学生是主体,是一个发现者、研究者、创作者,而在学法上则运用了感受体验法、对比观察法进行学习,激发兴趣的同时培养能力。

六、说教学准备

教具:PPT课件

学具:基本的绘画工具

七、说教学过程

(一)设置疑问,导入新课

视频播放“T台走秀”的视频,引导学生观赏,并思考问题:这些模特有什么特点?身材比例有什么特点?

学生自由发言,教师总结:模特的身材比例是“黄金比例”,并且提出疑问:什么是黄金比例?带着疑问学习今天的课程《美术中的比例》。

【设计意图】通过播放视频并设置疑问,一方面激发学生的兴趣从而调动学生学习的积极性,另一方面明确本堂课的任务,引入主题。

(二)观察探讨,认识比例

1.讲授黄金比例的由来。

(据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。)

【设计意图】激发学生对学习黄金比例的兴趣,为后面的讲解做铺垫,并且也拓展了学生的知识面。

2.①展示《巴黎圣母院》的建筑图片,引导学生观赏,并思考:这个建筑有什么特点?

②学生大胆的猜想并自由的回答,教师布置任务:测量课本中巴黎圣母院的'高与宽的长度并计算比例关系。

学生动手测量,教师总结并讲授黄金比例:黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

【设计意图】学生亲自动手测一测,量一量,通过这种体验式的学习方式提高学生自主学习的能力以及发现问题、分析问题和解决问题的能力。

3.展示范宽《溪山行旅图》,引导学生思考并提出问题:这幅作品画了什么?山石有什么特点?山和人物的大小对比如何?哪一部分可以体现黄金比例?(小组讨论)

学生交流探讨,教师总结:宋代画家范宽的《溪山行旅图》描写了我国陕西一带的风光,山处在画的中央,顶天立地,雄佛壮观下面的商人赶着驴,显得很小,这就更突出了大山高耸气势。这幅画成功地运用了山和人物之间的比例关系,是我国山水画的杰作。整幅作品中近景与远景的比例约为5:8。

4.提出问题:人体中的黄金比例是如何来体现的?

学生大胆的猜想,并回答。教师展示达芬奇《维鲁维斯的人》,并引导学生测一测,量一量,教师总结:人伸张四肢和立正时是圆形和正方形的关系,而黄金分割则是以肚脐为中心,划分的上下身比例为黄金分割的近似值5:8。

【设计意图】通过对两幅美术作品中比例的分析,学生认识黄金比例在作品中的运用,以及美术与科学的联系,加深对黄金比例的理解,锻炼学生的观察能力与审美能力,养成严谨的学习态度。

(三)回归生活,比例运用

1.提出问题:生活中还有哪些地方体现了黄金比例?可以有尺子量一量。

学生各抒己见,教师总结:课本、花瓶……

2.布置任务:试着将课本中泰姬陵与古瓶的“黄金分割比”画出来。

学生测一测画一画,教师总结:古瓶的高与肚,颈与瓶口体现黄金比例。

【设计意图】让学生了解到比例关系是随处可见的,认识黄金比例在生活中的运用,培养学生热爱生活。

(四)创作实践,展示评价

1.布置作业要求:根据所学的“黄金分割比”设计一个比例关系适宜且装饰美观的花瓶。

2.学生实践,教师巡视辅导。

3.学生自愿分享作品,并从黄金分割比进行自评、互评、教师总结。

【设计意图】一方面指导学生学以致用,帮助学生运用黄金比例进行创作,在实践中感受比例在生活中的重要性,提高绘画的表现能力。另一方面师生沉浸在用不同比例关系、不同表现形式设计出的漂亮花瓶作品中,大家欣赏着自己的设计作品倍感骄傲和自豪,欣赏后大家互相提改进意见,相互评价,让学生再一次感受比例给我们生活带来的享受。

(五)拓展延伸,小结作业

1.展示图片并总结:黄金比的确是美的,但是人们往往不满足于习惯的比例、造型、艺术大师们还创造了许多具有个性的创作,如艾菲尔铁塔、摩天大楼,它们并不是各个部位都体现黄金比,但都给人们流下了深刻印象。

2.课下观察生活中的建筑、物品等,并量一量看看哪些运用了黄金比例,哪些又具有特殊的比例美感。

【设计意图】展示不同类型的艺术作品,引导学生认识到比例在造艺术中的重要性,拓展学生的知识,开阔眼界。并且锻炼学生善于发现美、认识美的好习惯。

八、说板书设计

以上就是《美术中的比例》说课稿,希望能对考生有所帮助。更多说课稿可查看-说课频道。

精选阅读

比例课件


上课前准备好课堂用到的教案和课件是非常重要的,这就需要我们的老师写好属于他们自己的教学课件。教案的设计需要与时俱进,如何才能算是一份好的教案和课件呢?最近发现一篇网络文章《比例课件》,内容非常实用,有很多值得借鉴的地方,相信会对你的学习和工作产生帮助!

比例课件 篇1

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:认识正比例的意义

教学难点:掌握成正比例量的变化规律及其特征

设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

比例课件 篇2

教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

教学目标

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

难点:运用比例的知识解决一些简单的实际问题。

课前准备课件。

教学流程设计意图

一、比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书第83页“练习与实践”。

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的联系

出示:a∶b=()÷()=(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

(2)填空:

=()÷()=()∶()

(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教材第83页的“练习与实践”。

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第3题:解比例,做好后选两题验算一下。

四、完成教材第84页“练习与实践”。

(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第5题:

第一小题让学生独立得出:深色与浅色地砖铺地面积的

比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(3)完成第6题。

五、评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

对比和比例进行比较,强化理解,进一步优化知识结构。

复习解比例。

应用比例分配知识解决实际问题。

比例课件 篇3

教学内容:

北师大版小学数学第十二册第二单元第30—31页。

教学目标:

1让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

教学准备:多媒体

教学过程:

一、独立探究、合作生成

教师:请同学们在自己纸上画出长9米,宽7米的教室地面来。

学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办?

学生2:可以利用前面所学的知识————图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。

教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?

学生:在图的右下方有“比例尺1:100”

教师:观察真仔细!比例尺1:100是什么意思?

1学生讨论。

2学生汇报:

学生1:图上1厘米长的线段表示实际100厘米。

学生2:图上距离是实际距离的1/100。

学生2:表示实际距离是图上距离的100倍。

3揭示比例尺的意义。

教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)

二、自然生成、进行应用

1教师补充板书:图上距离∶实际距离=比例尺

图上距离/实际距离=比例尺

2教师:你们在什么地方看到过比例尺?

学生1:在中国地图上。

学生:在世界地图上。

学生:在房屋设计图上。

……

2教师:比例尺1∶300是什么意思?(注重意思的多样化)

学生交流(略)

3认识比例尺特征:

(1)课件出示中国地图的比例尺、世界地图的比例尺……

教师:通过观察,你们发现比例尺有什么特点?

学生:地图上的比例尺一般写成前项是1的比

4、运用知识,尝试解决问题:

教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。

(1)学生独立完成。

(2)汇报算法

学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米

学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米

学生3:卧室的实际面积是5×4=20平方米

三、解决问题、巩固提高

1、算出笑笑家的总面积是多少平方米?

2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。

3按比例尺是1:200,画出我们教室的平面图。

四、总结深化、活化知识

这节课大家有哪些收获?

五、研究性作业

1完成第30页的思考题。

2、试画自己家庭的住宅平面图,并计算一下每个房间的面积。

比例课件 篇4

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的.钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

比例课件 篇5

教学内容:

本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

教材分析:

本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

教学目标:

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

教学重点:

认识正、反比例的意义

教学难点:

根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

课时安排:

正比例和反比例(4课时)

第1课时

教学内容

成正比例的量

教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

课型

新授

本单元教时数:4本教时为第1教时备课日期月日

教学目标

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

教学重点

使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点

根据正比例的意义正确判断两种相关联的量是不是成正比例。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例1

1、谈话引出例1的表格

2、这两种量的数据是怎样变化的?

时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

3、但是,你能发现什么呢?

如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

这个比值是什么呢?

谁能用一句话来概括例1中的变化与不变

4、介绍成正比例的量

指名说说,表中有哪两种量

引导学生观察,

指名说一说。

启发学生从“变化”中寻找“不变”。

学生试着回答,教师帮助完成。

学生完整的说说路程和时间成正比例的量

二、教学试一试

1、出示教材试一试

教师指导学生完成

学试着完成,并交流回答四个问题。

三、概括意义

1、引导学生观察例1和试一试,它们有什么共同点。

2、概括正比例的意义,揭示课题(板书)

3、用字母怎样表示成正比例关系的两种量呢?

y:x=k(一定)

观察,说说自己的发现。

学生完整的说一说例1和试一试成正比例关系。

四、巩固练习

1、完成练一练

2、练习十三第1题

重点让学生说出判断的理由

3、做练习十三第2题

4、做练习十三第3题

引导学生根据计算的结果来判断。完成书上的问题

重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

独立判断,交流时说出判断的理由。

学生先各自算一算,交流,说出思考过程。

指名判断,交流时说出思考过程,其它同学进行补充或纠正。

学生理解题意,然后在书上画一画,算一算,填在书上。

五、全课总结

学习了什么?你有什么收获?

说一说

板书

正比例的意义

两种相关联的量=k(一定)y和x就成正比例的量

课后感受

第2课时

教学内容

正比例的意义及其图像

教材第63页例2,随后的练一练和练习十三的第4、5题

课型

新授

本单元教时数:4本教时为第2教时备课日期月日

教学目标

1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学重点

使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

教学难点

使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例2

1、先出示例1的表格

谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

引导学生观察这些点的排布规律,并用直线连起来。

提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

(2)图中所描的点在一条直线上吗?

(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

学生描点。

学生按要求操作完成。

指名回答

如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

二、巩固练习

1、练一练

学生做好后展示学生画的图象,共同评议

问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

指名回答第(3)个问题

追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

2、练习十三第4题

既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

第二题要求估计,答案出入是允许的

3、第5题

先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

学生独立完成

指名回答第(2)个问题

学生相互间说一说

学生回答,要说明理由

讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

三、全课总结

今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

说说,议论议论。

板书

正比例的意义及其图像

例2(图像)

课后感受

比例课件 篇6

教案背景:

本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

教学课题:《反比例》

教材分析:

教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

教学目标:

知识与技能:

1.让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

过程与方法:

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

情感、态度与价值观:

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的'联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。

教学法

教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲

解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法

进行学习,必要时进行合作交流。

教学课时:一课时

教学过程:

一、创设情境,提出问题:

老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?

生思考回答:在地图上。

师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识?

生:图形的放缩。

师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是

什么形状的?你会画吗?

生:长方形。

师:那我们来估一估它的长和宽吧

(生:长大约9米,宽大约6米 。 )

师:请大家在练习本上画出教室的平面图。(生画师巡视)

学生动手操作,反馈。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故

意)?为什么?

生:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩

小一定的倍数在纸上表示出来。

师:你的想法很对,跟笑笑同学的想法一样。

师板书学生结果:逐步引出1:100

1学生汇报。

2学生讨论:

学生:图上1厘米长的线段表示实际100厘米。

3引出课题。

教师:这就是今天要学习的新知识——比例尺(板书课题)

二、合作探究,解决问题:

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文

字比例尺、线段比例尺。

2.认识比例尺的意义。

师:比例尺1:500是什么意思?

生1:就是图上1厘米的长度代表现实中的500厘米。

生2:实际距离是图上距离的500倍。

1生3:图上距离是实际距离的。 500

师:比例尺1:2200000是什么意思?

生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。 生2:?

师:同学们讲得都对,那到底什么是比例尺?

学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际

距离的比。

小结比例尺的特点及应注意的问题.

三、练习巩固,检测反馈。

1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10

千米。求图上距离和实际距离的比?

学生独立做,集体反馈。

练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米? 02040 60千米

练习3、4略

2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。 在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

3、再次认识比例尺

出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

比例尺把实际距离缩小一定的倍数如1:30000000

把实际距离扩大一定的倍数如200:1

引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

四、合作总结,整理内化。

通过本节课的学习,你有哪些收获?

五、布置作业。

1、请大家把书翻到30页,量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

算一算笑笑卧室

实际的长是()米,宽是()米,面积是()平方米。

学生独立完成。

2.同学们,你们能自己确定比例尺,把自己家的平面图画下来吗?

板书设计

比例课件 篇7

教学目标:

1、让同学在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,学会解决生活中的一些实际问题。

4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。 教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,学会解决生活中的一些实际问题。

一、激疑诱趣,引入新知:

很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?

二、动手操作,认识比例尺:

1、操作计算。

(1)画线段。

让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

①橡皮长5厘米 ②铅笔长18厘米 ③米尺长1米

咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?(可以把1米缩小若干倍后画在纸上。)这个办法不错。就用这种方法画吧。

(重点:体会比例尺的实际意义,因为需要所以产生。)

(2)学生画完,集体交流。

你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘

米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?(2厘米:1米、??)

教师指名回答,并板书计算过程。

2、揭示比例尺的意义

其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离(板书) ?比例尺。实际距离

板书2厘米?5厘米?10厘米1米 一幅图的图上距离与实际距离的比?叫做这幅图的比例尺

同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

三、探讨比例尺的计算方法

同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)

小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?

大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)

学生汇报计算结果。

四、应用比例尺知识解决问题

1)和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

从1﹕10000这一比例尺上,你能获取那些信息?(图上距离是实际距离的万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等)

2)填空并判别哪个是比例尺。

把一个长2米,宽1米的长方形画在图纸上,长画了10厘米,宽画了5厘米。

(1)图上的长和实际长的最简比为(1∶20)。

(2)图上宽和实际宽的最简比为(1∶20)。

(3)图上周长和实际周长的最简比为(1∶20)。

问:这幅图的比例尺是多少?

(4)图上面积和实际面积的最简比为(1∶400)。

预设:学生可能填1:20,引导交流为什么错,计算纠正。

追问:那这1:400是这幅图的比例尺吗?为什么?你发现了面积的比和比例尺有什么关系?

学生独立计算、回答。

强调:比例尺是图上距离:实际距离,不是图上面积:实际面积,这幅图的比例尺是多少?

五、介绍线段比例尺:

像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?

六、拓展延伸:认识精密比例尺

画一个物品,如果用1:10 (缩小了)1:1(相同) 2:1(放大了) 画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1??.进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)

在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?

七、讨论:

1)比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2)求比例尺时,通常要做什么?

3)化简后的比例尺,它的前项和后项一般是什么形式?

八、巩固练习

1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?

2、判断下面的说法是否正确:

下面是小聪学习了比例尺后写的一段数学日记:

今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1.哈哈,原来比例尺就是这么简单!

九、自我反思,总结评价

这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?

同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!

十、课堂作业

(一)填一填

1、图上距离与实际距离的比叫做( )。比例尺=():( )

2、比例尺分为两种,一种是(),另一种是( )

3、为了计算简便,通常把比例尺写成()的比

4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是( )

5、一幅地图的比例尺是1:20000,它表示实际距离是图上距离的( )倍,图上距离是实际距离的( );它还表示图上1厘米代表实际( )米

6、如上图1厘米表示实际距离( )千米,化为数值比例尺是( ),实际距离是图上距离的( )倍,图上距离是实际距离的( )

(二)判断

1、比例尺是一种测量的工具。( )

2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。()

3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ( )

4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .()

5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10 ( )

比例课件 篇8

教学内容:

教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重难点:

理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

学情分析

1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

多媒体运用:ppt课件

教学过程:

一、教学例1

1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

根据学生的回答,教师板书关系式:路程时间=速度(一定)

5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

二、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

三、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式。

四、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

五、全课小结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

比例课件 篇9

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

教学目标:

⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:进一步理解比和比例的一些知识。

教学难点:感受比的应用价值,在活动中获得一些新的认识。

教学具准备:

教学流程:

一、自主学习,完成练习。

⑴揭示课题。

教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

⑵自主练习。

教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

学生自主练习,教师巡视。

二、交流讨论,梳理知识。

⑴整理比的知识。

交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

⑵感受生活中的比例。

交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

⑶整理比例的知识。

交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

⑷整理解比例的知识。

交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

⑸解决实际问题。

交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

⑹谈谈本节课的收获。

比喻课件范例十二篇


教案课件:激发教学潜能,提升学习效果

比喻课件 篇1

《五彩池》写的是四川省藏龙山的五彩池的奇异景象。文章中运用了许多比喻,即打比方的方法,给文章增色不少。

首先,用像一圈圈金色的带子突出了五彩池边沿的不同寻常;接着,用有的像葫芦,有的像镰刀,有的像脸盆,有的恰似盛开的莲花等排比式比喻形象地描写了多得数不清的五彩池的姿态万千,给人以丰富多彩的印象。对于鲜艳多彩的池水,作者在列举了闪耀着红、黄、绿、白、紫、蓝等各种光彩之后,用了像一幅巨大的彩画铺展在眼前这样一个比喻,使五彩池的鲜艳多彩更加形象具体,显得活灵活现,异彩纷呈,令人眼花缭乱,目不暇接。

池底生着许多石笋,有的像起伏的丘陵,有的像险峻的山峰,有的像矗立的宝塔,有的像成簇的珊瑚。这里的排比式比喻形象地说明了池底石笋的千姿百态,而紧随其后的石笋就像高低不同的折光镜这个比喻,就把同样的水在不同的池子里显出不同的颜色的原因描述得一清二楚了:由于它们把阳光折射成各种不同的颜色。

比喻形象生动,回味其乐无穷。我们在《五彩池》的诵读中应该有这样的感受。◆

比喻课件 篇2

语言大师老舍先生调动了多种修辞手段,写出了情文并茂、脍炙人口的优秀散文《林海》,其中突出的特点是成功地运用了拟人和比喻这两种修辞手法。

①每条岭都是那么温柔,虽然下自山脚,上至岭顶,长满了珍贵的林木,可是谁也不孤峰突起,盛气凌人。

运用了拟人手法,写出了大兴安岭的特点:温柔。这是与秦岭的高大险峻,孤峰突起,盛气凌人相比较而言的,作者的感情倾向十分明显。这种赋予人格化的语言,能启发读者联系社会生活中人与人的相处关系展开联想,富有教育意义。

②在松影下开着各种小花,招来各色小蝴蝶它们很亲切地落在客人身上。

通过拟人手法,写出了小蝴蝶对小花的喜爱,正好与作者的思想感情得到共鸣。

③在阳光下,一片青松的边沿,闪动着白桦的银裙,不像海边上的浪花吗

把白桦当作身着素服的美女来写,这是拟人,继而又通过反问的形式把白桦比喻为海边上的浪花(明喻),从而加强了肯定语气,表达了作者对白桦的赞美之情。

④群岭起伏是林海的波浪。

这是暗喻(是为比喻词),喻大兴安岭林木之多。把起伏的群岭比作林海的波浪,使静物富于动感,构成了极为生动的画面。此外,林海,即森林的海洋,本体是林,喻体是海,两者压缩成偏正短语(定+中),省略比喻词,这种修饰性比喻也属于暗喻。

⑤是的,这里是落叶松的海洋。

落叶松的海洋也构成定语+中心语的偏正短语,也是暗喻(同时兼有夸张意味),极言落叶松之多、松林面积之广,与课题林海二字紧紧扣合。

⑥兴安岭多么会打扮自己呀:青松作衫,白桦为裙,还穿着绣花鞋。

此例把拟人和比喻融合在一起。作者首先赋予大兴安岭以美女的思想行为:多么会打扮自己呀,这是拟人。冒号后面既用拟人,又用比喻:青松作衫,白桦为裙是暗喻,比喻词是作为;绣花鞋比喻山野花,本体山野花未出现,没有用比喻词,这是借喻;穿是人的行为,属于拟人。这些拟人和比喻的连用和兼用,十分熨贴传神,把大兴安岭的风光描绘得淋漓尽致,给人以活灵活现的形象美感。

比喻课件 篇3

一、教学目标:

1、能从学过或未学的课文中,识别出运用比喻修辞手法的句子。

2、能根据比喻句的结构形式特点,认识一些比喻词,从而加深对比喻句的理解。

3、能造比喻句。

二、教学重难点

1、进一步掌握比喻句的特征。

2、能区分比喻句和“伪比喻句”。

三、教学过程:

(一)图片,音乐导入

(1)出示图片

(2)播放音乐《弯弯的月亮,小小的船》

(3)出示一句常见的比喻句。

(二)出示比喻句的定义,比喻句,就是打比方,用浅显、具体、生动的事物来代替抽象、难理解的事物。并出示例句,让学生通过讨论指出把什么比作什么。

(三)四种疑似比喻句的判断。

1、表示比较

(1)大家都说我长得像爸爸。

句中的“像”是我的样子和 爸爸的样子的比较,不是比喻句。

(2)弟弟好像长高了。

句中的“好像”是弟弟以前的身高和现在的身高的比较,也不是比喻句。

2、表示猜测

(1)我好像在哪里见过新同学。

句中的“好像”表示猜测,怀疑,判断。不是比喻句。

(2)这支铅笔似乎是我的。

句中的“似乎”同样表示猜测,估计,判断,不是比喻句。

3、表示联想

他静静地听着,好像面对大海……

句中的“好像”是他的想象,不是真的比喻句。

4、表示说明

这只小天鹅好像鸭子。

句中的“好像”是说小天鹅像鸭子的情况说明。

(四)练习巩固,判断下面的句子是不是比喻句

1,老师好像我妈妈一样。(×)

2,天上的星星好像一闪一闪的眼睛。(√)

3,我好像饿了。 (×)

4,圆圆的月亮好像碧玉盘。 (√)

(五)阐述比喻的作用。

(六)简介比喻句的注意点。

比喻课件 篇4

人教版六年制小学语文第九册《威尼斯的小艇》中的威尼斯的小艇有二三十英尺长,又窄又深,有点像独木舟一句,教参及一些杂志上都说它是比喻句。按理说,小艇与独木舟都是船,是同类事物,不能构成比喻。它如是比喻句,那么下面的句子也是比喻句吗?

①高梁的许多气根,有点像榕树的根。

②他个子高高的,眼睛大大的,像他爸爸。

③李君眼窝深陷,鼻梁挺直,有点像欧洲人。

关于同类事物可以构成比喻,本刊曾刊登过文章,我在问讯处上出谈到过。鉴于不少教师还不断地提出疑问,这里作一个小结性的回答。

同类事物能构成比喻,是修辞学界近十几年来公认的。最典型的例子是:人民教师是辛勤的园丁。

同类比喻的本体和喻体只是从总体上看是同类事物,具体的对象是同类事物中的不同种别,如教师和园丁是两种不同类型的人。这个道理得用逻辑学上概念的内涵和外延的理论来说明。也就是说,只要甲事物和乙事物在概念的内涵和外延上不相重合,而又有相似点,就可以构成比喻。如教师和园丁在内涵和外延上不相重合,但两者之间有相似点(都为他们的工作对象付出了辛勤的劳动),就能构成比喻。(详见本刊20xx年第9期第81页)

就笔者近一二十年来在修辞学著作及刊物上看到的被论者确认为同类比喻的例子来看,主要有以下一些(本体、喻体下面加下划线):

△我们是祖国的花朵,教师是辛勤的园丁。

△作家是人类灵魂的工程师。

△他(闰土)像个木偶人了。

△这些人走起路来像小脚女人。

△简化字层出不穷,人人都成了仓颉。

△一个人站在便道旁边的电线杆子下,已经变成一个雪人。

△董存瑞像巨人一样挺立着,两眼放射着坚毅的光芒。

△威尼斯的小艇有点像独木船。

以上诸例中的本体和喻体都存在着种差现象(同属中某个种不同于其他种的属性,叫种差)。其中像个木偶人变成雪人两句,表面上看都指人,其实它们并不是真正的人。所以仔细想想还是属于非同类比喻。至于前面有几位老师问到的例①②③,都是同类比较,而不是同类比喻,因为它们中的甲乙两事物的概念上是重合的,不存在种差。

比喻课件 篇5

1、认识比喻句的.特点;初步判断一句话是不是比喻句;学写比喻句。

2、在活动中学习,使学生进一步掌握比喻句的基本知识,学写比喻句。

3、培养学生写比喻句的兴趣,从而乐于表达,乐于写话。

【教学重点】了解比喻句的表达特点。

【教学难点】掌握比喻句的基本知识,学写比喻句。

一、提问导入。

1、彩虹挂在雨后的天空。

2、美丽的彩虹就像一座七彩的桥挂在雨后的天空。

同学们,这两个句子,哪个句子写得美呢?为什么呢?

(一)什么是比喻句?

是的,像第二句这样的句子可以更好的表达思想感情,使语言准确、鲜明、生动,具有更大的说服力和感染力,我们将这样的句子称为比喻句。

比喻句俗称打比方,用浅显、具体、生动的事物来代替抽象、难理解的事物。简单点说,就是把一个物体或人比喻成另一个物体。它是利用两种不同种类的食物之间的某种相似点来进行说明或描写。

(二)认识比喻句的结构。

1、下面老师给大家带来一个句子:“弯弯的月亮像一根香蕉。”请同学们仔细观察这个句子写了哪两样事物,它们有什么相同点呢?恩。同学们观察的可真仔细!“弯弯的月亮像一根香蕉。”这句话中的月儿和香蕉是不同种类的事物,但他们有共同之处,都是弯弯的,而且两头尖,所以这个句子呀就是我们刚才所说的比喻句。

2、一般来说,一个比喻句包括三个部分:本体、喻体和比喻词。句中本体、喻体必须种类不同,但是有相似之处,存在着比喻关系。

那同学们请看这个句子:“树上的苹果就像一个个灯笼一样又大又红”。这个比喻句中,本体、喻体、比喻词各是什么?请开动脑筋找一找吧!恩,真厉害!这么快就找到了。在这个比喻句中,苹果是本体,灯笼是喻体,像是比喻词。相似之处是大、红,但是二者本质不同。

3、通常把被比喻的事物叫作“本体”,把拿来作比的事物叫作“喻体”,把联系“本体”和“喻体”的关键词叫作“比喻词”。

“孔雀那美丽的尾巴抖动着,像一把五彩洒金的大扇子。”在这个比喻句中,本体是孔雀,喻体大扇子,比喻词是像。

联系两者的关键词是比喻词,常用比喻词有:像、是、好像、好似、如、犹如、如同、仿佛、成了、变为……

同学们,刚才通过对比喻句中本体、喻体、比喻词的学习,你们学会了吗?下面老师要考考你呦!

“火红的太阳,远远看去像一个大火球。”这个比喻句中,本体是();喻体是;比喻词是()?赶快写下来吧!同学们又答出来了,真棒啊!这个比喻句中,本体是(太阳);喻体是(大火球);比喻词是(像)。

1、那么怎样判断一个句子是不是比喻句呢?

我们通过“三看一比”的方法。一看“本体”;二看“比喻词”;三看“喻体”;“一比”种类不同,只是相似。

同学们判断一下,这几个句子是不是比喻句,说说理由吧!

我好像是生病了。

妹妹急得像要哭了。

他长得真像他的爸爸。

太阳如同婴儿的笑脸。

第二句解析:本体是妹妹,比喻词是“像”,但没有喻体,所以不是比喻句

第三句解析:他和爸爸都是人,种类相同。不能构成比喻句。

第三句解析:太阳和笑脸的种类不同,但有相似之处。是比喻句。

(四)比喻句有什么作用?

(1)说理浅显易懂,使人容易接受。

(2)化抽象为具体,使事物清楚明白。

(3)使概括的东西形象,给人深刻的印象。

(4)起到修饰文章的作用。

三、学写比喻句。

1、接下来我们试着写一写比喻句。首先做基础练习,观察两组事物,把相似的事物连一连。然后用通俗的语言把这两组事物连成一句比喻句。

比喻句:

银杏树的叶子像一把把美丽的小扇子。

天上的蜻蜓像一架小飞机。

森林里的小蘑菇像一把雨伞。

燕子的尾巴像一把锋利的剪刀。

2、巩固练习。看图把比喻句补充完整。

红红的枫叶像(燃烧的火焰)。

平静的湖面犹如一面(硕大的银镜)。

四、鼓励总结,激发写“比喻句”的兴趣。

看到同学们能正确地把握比喻句,老师真的非常高兴。小小的比喻句藏着很多的奥秘,今后要不断的探索,同时也要多练、多写比喻句才能是将它们运用到自己的文章当中去,令人赏心悦目。

比喻课件 篇6

一、教学目标:

1、能从学过或未学的课文中,识别出运用比喻修辞手法的句子。

2、能根据比喻句的结构形式特点,认识一些比喻词,从而加深对比喻句的理解。

1、进一步掌握比喻句的特征。

2、能区分比喻句和“伪比喻句”。

(3)出示一句常见的比喻句。

(二)出示比喻句的定义,比喻句,就是打比方,用浅显、具体、生动的事物来代替抽象、难理解的事物。并出示例句,让学生通过讨论指出把什么比作什么。

(1)大家都说我长得像爸爸。

句中的“像”是我的样子和 爸爸的样子的比较,不是比喻句。

(2)弟弟好像长高了。

句中的“好像”是弟弟以前的身高和现在的身高的比较,也不是比喻句。

(1)我好像在哪里见过新同学。

句中的“好像”表示猜测,怀疑,判断。不是比喻句。

(2)这支铅笔似乎是我的。

句中的“似乎”同样表示猜测,估计,判断,不是比喻句。

他静静地听着,好像面对大海……

句中的“好像”是他的想象,不是真的比喻句。

这只小天鹅好像鸭子。

句中的“好像”是说小天鹅像鸭子的情况说明。

(五)阐述比喻的作用。

(六)简介比喻句的注意点。

比喻课件 篇7

一、谜语导入

让我们一起来猜个谜语吧。身体轻又轻,空中来飞行,有时像棉花,有时像鱼鳞(猜一自然现象)——是云,你猜到了吗?

句中用像棉花,像鱼鳞,这样具体的事物来表述抽象的自然现象——云。这种比喻叙事很重要,能体现一个人的文采,我们可得好好学一学“比喻句”。

二、认识比喻句

那到底什么是比喻句?原来就是打比方,用浅显、具体、生动的事物来代替抽象、难理解的事物。它一般由本体,比喻词和喻体组成。请看我们三年级上册第六课《西湖》中的句子:平静的湖面,犹如一面硕大的银镜。本体:湖面,比喻词:犹如,喻体:银镜。

下面我们就来进行练兵活动。请用比喻的方法描述自己看到的景物。我们班有同学这样写道:

1、苹果树上挂满了苹果,远远看上去像一个个红灯笼。

2、树叶上的露珠,像一颗颗宝石。

嘿,为什么?我们来看看,通过看图就知道了:苹果与红灯笼,露珠与宝石不仅有相似之处,且是两种不同种类的事物。但老师和妈妈却都是人,所以不存在比喻关系。

三、总结比喻句的特点

这里我们总结出比喻句的二个特点:

(1)一般有本体、喻体、比喻词三个部分。

(2)句中本体、喻体必须是两种不同种类的事物,而且有相似之处,存在着比喻关系。

四、比喻句大练兵

了解了比喻句的特点,我们就掌握了比喻句了。你掌握了吗?请让我们来展示一下自己的学习成果。我们来看图找找事物之间的相似处,列出比喻关系,先从颜色入手找:白如雪,绿如玉,粉似霞;再来从形状入手找:像绣球,像玉珠,像龙爪。

最后一个温馨提示:让我们都来做生活中的有心人,多观察,多练习,在平时说话、写作中多用比喻句,让言语更生动,让文章更出彩!

比喻课件 篇8

根据两种事物之间相似的特点,把一种事物比作另一种事物的辞格,叫比喻。比喻就是平时说的打比方,比喻句的形式多,容易与有几种句式混淆,我们怎样区别它们呢?

⒈缩句找特征。比喻句一般有本体、喻体和喻词。简单的比喻句比较好找,如老师像辛勤的园丁。本体是老师,喻体是园丁,喻词是像。但句子长了就比较难找,所以先要将长句缩成短句,这样就容易了,如接着,从船底喷出强大的气流,气垫船就离开了水面,象离弦的箭一样向前飞驰。可缩成:气垫船象箭一样飞驰,它的本体、喻体、喻词的特征就很明显了。

⒉换词法。用是作喻词的比喻句,与有此含有是的句子容易混淆,我们可以用换喻词的方法加以区别。如果句意变化了,就不是比喻句。如:老师是园丁把是换成像老师像园丁,句意没变,是比喻句;他是战士。换成他像战士。句意变了,不是比喻句。

⒊去词法。比喻句中的喻词好像是不能支掉的,不是比喻句的好像可以去掉。如:猫的眼睛好像蓝宝石。去掉好像就不通,是比喻句。我们好像见过面。去掉好像句子仍然能读通,所以不是比喻句。

⒋加词法。有此比喻句不用喻词,我们可以加上喻词来辨析它。比喻就明显了。如弯弯心月儿小小的船,小小的船儿两头尖。加上好像后就变成弯弯的月儿好像小小的船,小小的船儿两头尖。

比喻课件 篇9

教学目标:

1.了解拟人句的作用,将自己喜爱的事物写生动有趣。

2.在写话练习中,掌握拟人句和比喻句的不同,能够正确运用并完成练习。

知识与技能目标:

进一步掌握比喻句和拟人句的特征,在实际生活中学会运用。

过程与方法目标:

结合具体实例,正确区分比喻句和拟人句。

情感态度价值观目标:

学会在语境中灵活运用比喻句和拟人句,使句子更生动形象。

教学重难点

教学重点:

1、理解和正确区分比喻句和拟人句的特征。

3、学会在语境中灵活运用比喻句和拟人句,使句子更生动形象。

教学难点:比喻句和拟人句的区分,能够正确运用并完成练习。

教学手段:

多媒体课件

教学过程:

图片导入

一、导入

同学们,你的身边一定有许多你喜爱的东西,请你用生动形象的语言描绘一下,让他们“活”起来吗?

提示:用上拟人的修辞说写一句话,描绘图画。

二、小组合作学习

(1)以小组为单位交流一下。

(2)你能将它们写一写吗?

(3)让我们一起来交流一下吧。

(一)师巡视,对学生作品进行择优,多媒体出示学生作品:

1、每当我生气的时候,小书柜都会耐心倾听我诉苦。

2、一阵阵风吹来,院子里的花在对我们点头微笑。

3、下班时间到了,马路上的小汽车着急地排着队等着“红绿灯”的指挥。

4、看到我把攒下来的零用钱都捐给了灾区小朋友,储钱罐小猪都对我投来了赞许的目光。

同学们读了这些句子,你有什么感受呢?

学生交流:

师总结:为什么会有这样的效果呢?

(1)谈谈你对拟人句的理解。

(2)说说拟人句的作用各是什么?

(3)交流比喻句的运用应注意什么问题,拟人句的运用形式有哪些?

课件出示:拟人的定义和特点。

(二)发现易错点

根据刚才的学习,我们来看这两位同学写的句子:

发现共同点和不同点:

像这样的句子,我们还可想到很多:

1、春风像个慈祥的母亲,使你感到温暖舒畅。

2、春天是位魔法师,她融化了冰雪,让小草破土而出。

3、岸边的华灯倒映在湖中,恰似颗颗宝石缀在湖面之上。

(三)了解比喻

出示比喻句的定义和特点

透过刚才的学习,我们再来看这个句子:

小河清澈见底,宛如一条透明的蓝绸子,静静地躺在大地的怀抱里。判断哪些是比喻句,哪些是拟人句。

三、总结

同学们,让我们一起来总结一下两者的区别吧。

比喻句:有本体、喻体、喻词组成,把一种事物比喻成另一种和他本质不同的事物。

拟人句:没有比喻词,将事物赋予以人的行为、表情、动作、思维等特征。

四、完成拓展练习

判断以下句子属于拟人句还是比喻句。

(1)花儿在风中笑弯了腰。

(2)字典好像一个不开口的老师。

(3)顽皮的雨滴最爱在雨伞上尽情的跳舞。

五、板书设计

比喻、拟人易混淆

比喻句:物(喻词)物(常见、易懂)

拟人句:

(本体)物(喻体)人(言行、神态、思想和感情)(赋予)

比喻课件 篇10

许多名人喜欢用数学比喻,往往出语幽默、灰谐,好比深山闻钟,记人记忆久远。

古希腊哲学家芝诺号称悖论之父,他有四个数学悖论一直传到今天。他曾讲过一句名言:大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习。

人民教育家陶行知先生曾经说,他有八位好朋友做帮手,使他少犯错误,甚至可以不犯错误。他编了一首歌,读起来非常动听:我有八位好朋友,肯把万事指导我。你若想问真姓名,名字不同都姓何。何事、何故、何人、何如、何时、何来、何去,好像弟弟与哥哥。

还有一个西洋派,姓名颠倒叫几何。若向八贤常请教,虽是笨人少错误。美国作家杰克伦敦成名后,曾收到过一位女士的求爱信;你有一个出众的名声,我有一个高贵的地位。这再者加起来,再乘上万能的黄金,足以使我们建立起一个天堂都不能比拟的美满家庭。杰克伦敦连忙回信,他答得很妙:根据你列出的那道爱情公式,我看还要开平方!不过这个平方根却是负数。

比喻课件 篇11

一、教学目标:

1、了解比喻句的作用,认识比喻句的特点。

2、初步判断一句话是不是比喻句。

3、培养学生写比喻句的兴趣,从而乐于表达,乐于写话。

二、教学准备:

一年级《小池塘》中一段优美的比喻句。几组形状、颜色相似物体的图片。

三、重难点:

1、了解比喻句的表达特点。

2、初步学写比喻句。

四、教学过程:

1、欣赏优美的.比喻句。

首先,我们一起来看一下小学一年级下册《小池塘》中这样一段话:

白云倒映在池塘里,像一群白鹅。

太阳倒映在池塘里,像一只鲜红的气球。

月牙倒映在池塘里,像一只弯弯的小船。

星星倒映在池塘里,像许多闪亮的珍珠。

写得美吗?它呀!美就美在用了四个比喻句。那么什么是比喻句呢?

2、观察句子,找出比喻句的特点。

就拿白云倒映在池塘里,像一群白鹅一句来说,句子中出现了两个不同的事物,白云和白鹅。它们具有相似之处,颜色相同、都是白色,并且形状也类似。像这样,把两个具有相似点的不同类别的事物放在一起做比较,这样的句子就叫比喻句,也叫作打比方。简单点说,就是把一个物体或人比喻成另一个物体。

下面老师给大家带来一个句子:弯弯的月儿像小小的船。请同学们仔细观察这个句子写了哪两样事物,它们有什么相同点呢?恩。同学们观察的可真仔细!弯弯的月儿像小小的船这句话中的月儿和小船是不同种类的事物,但他们有共同之处,都是弯弯的,而且两头尖 。所以这个句子呀就是我们刚才所说的比喻句。

一般来说,一个比喻句包括三个部分:本体、喻体和比喻词。通常把被比的事物叫作“本体”,把拿来作比的事物叫作“喻体”,把联系两者的关键词叫作“比喻词”。

3、巩固练习。

那同学们,弯弯的月儿像小小的船。这个比喻句中,本体、喻体、比喻词各是什么?请开动脑筋找一找吧!恩,真厉害!这么快就找到了。在这个比喻句中,月儿是本体,船是喻体,像是比喻词。同学们,刚才通过对比喻句中本体、喻体、比喻词的学习,你们学会了吗?下面老师要考考你呦!孔雀那美丽的尾巴抖动着,像一把五彩洒金的大扇子。这个比喻句中,本体是( );喻体是( );比喻词又是( )?赶快写下来吧!同学们又答出来了,真

棒啊!这个比喻句中,本体是(孔雀);喻体是(大扇子);比喻词是(像)大家学得真快啊!

我再出两道题考考大家!要认真思考哦!。请同学们判断一下,这两个句子是不是比喻句吗?

(1)妹妹急得像要哭了。

(2)小女孩像她妈妈一样美。

我们先来看:妹妹急得像要哭了。这个句子的本体是妹妹,比喻词是“像”,但没有喻体,所以不是比喻句。再来看第二句:小女孩像她妈妈一样美。我们都知道

比喻句中本体和喻体应是不同类别的事物,而这个句子中小女孩和妈妈是同一类别的,都是人,所以不能构成比喻句。

五、鼓励总结,激发写“比喻句”的兴趣。

通过比较,我们更清楚地明确比喻句具备以下两个特点:

(1)比喻句一般有本体、喻体、比喻词三个部分构成。

(2)句中本体、喻体必须是两种不同种类的事物,而且有相似之处,存在着比喻关系。

看到同学们能正确地把握比喻句,老师真的非常高兴。希望同学们在以后的生活中不仅能辨别比喻句,还能将它们运用到自己的文章当中去,令人赏心悦目。

比喻课件 篇12

人教版六年制小学语文第七册《五彩池》中运用了大量的比喻来描写五彩池。其中有一句是:池边是金黄色的石粉凝成的,像一圈圈彩带,把大小小的水池围成各种不同的形状依我们平时对比喻句的理解,都认为这一比喻是把池边比作彩带。因为这一句的主语是池边,本体就应该是池边。然而,《教师教学用书》上的教学建议第4点中却写着这是把池边金黄色的石粉比作一圈圈彩带,真让人费解。究竟谁对谁错呢?

刘云玲老师的意见完全正确,本人支持她的观点。

池边是金黄色的石粉凝成的,像一圈圈彩带是个复句,第二分句的主语承第一分句主语池边而省略,因此比喻句的主干是:池边像彩带。这样,本体是池边就显得而易见了。我们不防用一个句子作类比:

虹是天空中小水珠经太阳光照射发生折射和反射后由红、橙、黄、绿、蓝、靛、紫七种颜色组成的,像飘在空中的一条彩带。

这一比喻的本体显然是虹,而不是红、橙、黄、绿、蓝、靛、紫七种颜色。

《教师教学用书》上说:把池边是金黄色的石粉比作一圈圈彩带,是由于编写者把池边误解池的旁边了。其实这个边不是方位词,而是普通名词,即边儿。要是教参编写边理解为边儿,也就不会写出池边金黄色的石粉这样令人费解的话来了。

比例尺课件


为了帮助学生掌握上课的知识点,教师需要提前准备教案。在编写教案课件时,教师还需要下一些功夫。只有做好教案课件的前期准备工作,才能达到预期的教学目标。对于对“比例尺课件”感兴趣的读者来说,一定不能错过这篇趣祝福编辑精选的文章,相信会找到适合自己的内容!

比例尺课件 篇1

1、出示一幅中国地图,这幅中国地图是怎样绘制出来的?(没有学生回答)

同样是祖国的版土,画出来的地图却有大有小呢?(没有学生能够回答)

过了会儿,一个学生说是按比例画的。

今天我们就来学习比例的应用。

1、我们也来应用比例绘制一幅图,已知教室的长是9米,宽是6米,请你画出教室的平面图。

引出比例尺的概念。并抓住一个画得不象的同学,分析其原因。(随手画的,长和宽缩小的比例不同,从而告诉学生:同一幅图的比例尺应该是相同的)

学生通过看书作记号,进一步理解比例尺的意义,然后在先前的中国地图上找到这幅地图的比例尺,并说明这个比例尺意义。

1、说明前面我们学习的都是数值比例尺,还有一种线段比例尺。

2、学生看教材第48面,自学线段比例尺。

3、请学生汇报线段比例意义。

4、应用线段比例尺,测量北京站到天津站之间的距离大约是多少千米?

5、把线段比例尺改成数值比例尺。

1、老师出示一个小宝贝,大家看得清楚吗?

怎样利用比例尺的知识,让大家都看清这个宝贝的真面目?

二、学生汇报,教师根据学生的回答板书多种解法。

三、补充问题:如果地铁2号线的长度为65千米,那么,在这幅图应该画多长?(学生独立完成)

四、教师总结:

求图上距离和实际距离的方法,重点提示,用比例解法的过程。

五、学生独立在作业本上,绘制学校操场平面图。

然后,全班汇报,如何在黑板上规定的区域内把这个操场画出来?

比例尺课件 篇2

教学目的:1、认识比例尺,理解比例尺的意义,掌握求比例尺的方法;

2、培养学生的解决问题能力和自学能力;

3、体验数学知识与日常生活的密切联系,激发学习的兴趣,培养学生的探究意识。

1、要想知道我们教室的长和宽各是多少米,怎么办?师生合作测量,记录数据。

2、按照实际的长和宽把教室的平面图画在我们的作业本上,能行吗?怎么办?组织学生交流。

3、教师指出:在绘制地图和其他平面图时,常常需要把实际距离按照一定的比缩小或放大,再画在图纸上,这个比就叫做这幅图的比例尺(板书课题)

(1) 你能说说什么是比例尺吗?

(2) 出示比例尺的意义。组织学生齐读,在这句话中,你认为关键词是什么?

(3) 根据比例尺的意义 ,你认为应该怎样求比例尺?同桌互相说一说,并汇报,教师板书。(图上距离:实际距离=比例尺)

2、理解比例尺的含义。

(1) 指导学生观察P48图1,认识数值比例尺。

⑵指导学生观察P48图2,认识线段比例。

② 你能说说线段比例尺 |------| 表示什么意思吗?

⑶指导学生观察P49图3。

① 这幅图的比例尺是多少?②这个2:1表示什么意思?③这个比例尺和图1的比例尺有什么不同?学生小组交流,然后指名汇报。

③ 教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数,再画在图纸上,这时比例尺的前项就比后项大。

3、教学例题:在一幅地图上,用图上的 3厘米表示实际距离60千米,这幅图的比例尺是多少?

①先让学生说一说什么是比例尺,怎样求比例尺?

② 学生尝试解答,板演。

三、应用知识解决问题。

1、完成“做一做”。⑴学生独立练习,指名板演,集体订正 。⑵你认为求比例尺时应该注意什么?同桌交流①单位要统一,②前项或后项要化到1为止,③比例尺不带单位名称。

2、小小评论家。

② 比例尺1:200表示图上1厘米的距离相当于实际距离200厘米。(  )

③ 比例尺1;200也表示实际距离是图上距离的200倍,图上距离是实际距离的1200 。

④ 图上4厘米表示实际距离20千米,这幅地图的比例尺是1:5。(  )

3、完成练习八第1、2题。

四、小结。

通过今天这节课的学习,你有什么收获?

五、布置作业。

比例尺课件 篇3

教学目标:

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学难点:

运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)

师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。

(2)个人独立画出平面图;

(3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。

(设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)

他们画得像吗?

请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。

(设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)

象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。

投影出示比例尺的概念。

本节课你有哪些收获,还有那些不明白的地方?

比例尺课件 篇4

教学目标:

1、让同学在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3、运用比例尺的有关知识,学会解决生活中的一些实际问题。

4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。 教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,学会解决生活中的一些实际问题。

一、激疑诱趣,引入新知:

很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?

(1)画线段。

让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?(可以把1米缩小若干倍后画在纸上。)这个办法不错。就用这种方法画吧。

(2)学生画完,集体交流。

你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘

米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?(2厘米:1米、??)

教师指名回答,并板书计算过程。

其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离(板书) ?比例尺。实际距离

板书2厘米?5厘米?10厘米1米 一幅图的图上距离与实际距离的比?叫做这幅图的比例尺

同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)

小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?

大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)

1)和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

从1﹕10000这一比例尺上,你能获取那些信息?(图上距离是实际距离的万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等)

2)填空并判别哪个是比例尺。

把一个长2米,宽1米的长方形画在图纸上,长画了10厘米,宽画了5厘米。

(1)图上的长和实际长的最简比为(1∶20)。

(2)图上宽和实际宽的最简比为(1∶20)。

(3)图上周长和实际周长的最简比为(1∶20)。

(4)图上面积和实际面积的最简比为(1∶400)。

追问:那这1:400是这幅图的比例尺吗?为什么?你发现了面积的比和比例尺有什么关系?

学生独立计算、回答。

强调:比例尺是图上距离:实际距离,不是图上面积:实际面积,这幅图的比例尺是多少?

五、介绍线段比例尺:

像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?

画一个物品,如果用1:10 (缩小了)1:1(相同) 2:1(放大了) 画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1??.进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)

在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?

七、讨论:

1)比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2)求比例尺时,通常要做什么?

3)化简后的比例尺,它的前项和后项一般是什么形式?

1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?

2、判断下面的说法是否正确:

下面是小聪学习了比例尺后写的一段数学日记:

今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1.哈哈,原来比例尺就是这么简单!

这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?

同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!

4、一幅图上用10厘米表示实际距离200千米,这幅图的比例尺是( )

5、一幅地图的比例尺是1:20000,它表示实际距离是图上距离的( )倍,图上距离是实际距离的( );它还表示图上1厘米代表实际( )米

6、如上图1厘米表示实际距离( )千米,化为数值比例尺是( ),实际距离是图上距离的( )倍,图上距离是实际距离的( )

2、小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。()

3、某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ( )

4、一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .()

5、一个小型零件长5毫米,画在图上5厘米。这幅图的比例尺为1:10 ( )

比例尺课件 篇5

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的`一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。

4.介绍放大比例尺

出示图例2

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。

比例尺课件 篇6

《比例尺》是小学数学人教版教材六年级第二学期的内容。其教学目标是:(1)使学生理解比例尺的意义并能正确地求出平面图的比例尺。(2)使学生能够应用比例知识,根据比例尺求图上距离或实际距离。重难点:理解比例尺的意义;能根据比例尺正确求出图上距离或实际距离。

这部分知识因为小学生在生活中少接触,学生普遍都感觉比较枯燥,也比较抽象,所以针对以上情况我设计了如下一个教学结构图:情景创设进行引入——提出问题让学生质疑————认识比例尺(数值比例尺、线段比例尺)-——求出平面图的比例尺——巩固与应用、解决生活中的问题(根据比例尺求图上距离或实际距离)。——回顾与总结——布置研究性作业

在引入阶段,我选取了学生们非常熟悉国旗平面图,让学生观察这些平面图“什么变了,什么没变?”,进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。

在认识“比例尺”概念后,学会求比例尺,再根据比例尺求图上距离和实际距离。最后在让学生试着画一画教室地面的平面图,亲身体验设计师的感觉,并且提供给学生一个学习资料,让学生自己亲自感受到画图的标准,在汇报交流时,恰当的传授知识。

教学时,我觉得在每一个层次,每一个环节都很清楚,上了一节多课的时间。课堂教学时学生反馈的情况也还好的。但做起来的作业却是不尽人意。想想原因:1、这堂课的内容比较多。2、学生练习的时间不够多些。3、学生的作业态度、习惯很不好。(中午做。)在用比例解答时,有一小半的学生的“解设”、“答”、“单位名称”,什么都没了,看上去光头光脚的。今天跟他说了,明天还是这样。玩世不恭的感觉。

比例尺课件 篇7

一.教学内容:

比例尺的练习课

二.学习目标

1.通过练习,巩固对比例尺的认识。

2.培养学生联系实际解决问题的能力。

3.使学生感受到数学在生活中的广泛应用。

三.学习难点

把比例尺应用到实际生活中,解决实际问题

四.准备

课件习题

五.教学过程

一).复习导入

1.什么是比例尺?

2.说说实际距离、图上距离、和比例尺之间的关系。

二).教学实施

出示习题1.(解比例)

见课件

板演、集体订正。

出示习题2.(比例尺练习题)

见课件

集体订正

出示习题3.

见课件

出示习题4

三).小结。

比例尺在我们的生活当中应用广泛。我们要把比例尺的知识弄清、弄懂,才能在今后的生活中解答更多的比例尺的问题。

练习:

解决问题

1、在比例尺是1:3000000的中国地图上,量得上海到杭州的距离是5厘米。计算一下,上海到杭州的实际距离大约是多少千米?

080160240320千米

2.在一幅标有1:5000000的地图上,量得甲乙两地之间的距离是2.5cm。甲乙两地之间的实际距离是多少千米?

3.解决问题在比例尺是1:2000000的地图上,量得两城市间的距离是6厘米,如果画在1:5000000的地图上,图上距离是多少厘米?

4.解决问题

在比例尺是1:2000的图纸上,量得一个长方形花园的长是2.4厘米,宽是1.8厘米,这个花园的实际面积是多少平方米?

综合题

第三实验小学新建一个长方形游泳池,长50米,宽30米。选用比例尺()画出的平面图最大;选用比例尺()画出的平面图最小。

比例的课件


在正式上课之前,老师需要提前准备好本学期的教学教案和课件。现在开始准备教案和课件还来得及。教案是推动课程改革的重要工具,所以,什么样的教学课件才算是优秀的呢?经过趣祝福的编辑反复斟酌和修改,这篇“比例的课件”已经达到最佳状态。如果这篇内容对你有所帮助,请保存下来以备查阅!

比例的课件(篇1)

教学内容:

九年义务教育六年制小学数学第十二册P64——65

教学目标:

1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:

认识反比例的意义

教学难点:

掌握成反比例量的变化规律及其特征

设计理念:

课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

教学步骤教师活动学生活动

一、复习铺垫

1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

2、判断下面两种量是否成正比例?为什么?

时间一定,行驶的路程和速度

除数一定,被除数和商

3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

4、导入新课:

如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、探究新知1、出示例3的表格(略)

学生填表

2、小组讨论:

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

3、全班交流

学生初步概括反比例的意义(根据学生回答,板书)

4、完成“试一试”

学生独立填表

思考题中所提出的问题

组织交流,再次感知成反比例的量

5、抽象表达反比例的意义

引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

比例的课件(篇2)

教材分析

本单元是学生在已经学习了分数的基本性质,分数与除法的关系,分数除法的计算方法等内容的基础上进行学习的。主要内容有:比的意义、比的基本性质及化简,按比例分配解决实际问题。

在本单元的中间还穿插安排了“你知道吗”,介绍黄金分割比。单元的最后还安排了“综合运用”,在了解三峡工程的投资与效益的同时,感受有关分数知识和按比例分配在建设方面的应用。

这一单元分两个小节来编排。第一小节安排比的意义、比与分数、除法之间的关系,求比值、比的基本性质及比的化简。第二小节安排按比例分配解决问题。因为按比例分配是解决生产、生活中一些问题不可缺少的工具,所以在本单元中,它既是重点也是难点。教科书通过一些生产、生活的实例来呈现教学内容,既体现了数学来源于生活并服务于生活的思想,又能通过这些实例吸引学生,激发他们的学习兴趣。同时,比还是后继知识“正比例、反比例”学习的基础,要求务必学好。

教学目标

1、知识与技能

(1)理解比的意义,了解比、分数、除法三者之间的关系,掌握比的基本性质,并能化简比和求比值。

(2)结合具体情境,理解什么是按比例分配,并能解决有关的实际问题。

2、过程与方法

(1)经历探索比的意义,比值的含义,比的基本性质的过程,提高学生的整理水平,发展学生的思维能力。

(2)形成解决问题的一些基本策略与方法,体验解决问题的多样性,发展创新精神。

(3)学会从数学角度提出问题、理解问题,并能综合运用所学知解解决问题,增强应用意识。

3、情感、态度与价值观

(1)能积极参与教师组织的学习活动,体验数学活动充满着探索与创造。

(2)有获得成功的体验,对学习数学充满信心。

(3)感受数学与日常生活的密切联系,认识到许多问题可以借助数学的方法来解决。

教学重点

比的意义和性质,按比例分配。

教学难点

化简比。

教学关键

理解并正确运用比的基本性质。

学法指导

提供具体的教学情景,让学生在具体的环境中去理解、体会、应用。关注新、旧知识的联系,关注已有的知识和经验,放手让学生去探索、构建。当学生遇到困惑时,还要充分发挥教师的主导作用。

课时划分

本单元课时数:7课时。

1、比的意义和性质……………………………2课时

2、解决问题……………………………………3课时

比例的课件(篇3)

课标分析:

《数学课程标准》明确指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。

本节课是在学生理解了分数与比的联系,掌握简单的分数乘、除法应用题数量关系的基础上学习的,是把比的知识应用于解决相关的实际问题的一个课例,它是“平均分”问题的发展,并在实际生活工作中有广泛的应用,学习它能使学生深刻体会到数学源于生活,又高于生活,最后又服务于生活的辩证关系。掌握了按比例分配的解题方法,不仅能有效地解决生活、生产中把一个数量按照一定的比进行分配的问题,也为今后学习“比例”、“比例尺”奠定良好的基础。

教材分析:

本节课是通过明明和爸爸的对话及文字介绍提供了人体内水分和其它物质的数据信息,借助“明明体内的水分和其他物质各有多少千克”的问题,引入对应用比的意义和基本性质解答有关按比例分配的实际问题的学习。

通过本节课的学习,学生能结合具体情境理解按比例分配的意义;掌握按比例分配的计算方法,并能较熟练地运用按比例分配的方法举一反三地解决实际问题,养成良好的分析理解能力。学情分析:

本节课是在学生理解比的知识及求一个数的几分之几是多少的应用题的基础上进行学习的,由于学生在平时对饮料、奶制品的配比问题还是比较熟悉的,所以本节课的内容学生还是容易理解和掌握的。教学目标:

1.让学生感受比在生活中的应用,会用自己的话解释按比例分配的意义。会画图分析问题,养成检验的好习惯。

2.学生在观察比较中,总结归纳出按比例分配问题的特征和解题方法。

3.学生在探索中,将按比例分配问题转化成份数、分数知识解答,并能找到解决问题的多种方法。体验解决问题策略的多样性。

教学重点:

1.正确理解按比例分配的意义。

2.掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

教学过程设计:

一、创设问题,揭题导入

1.课件出示信息窗,呈现明明和爸爸的对话:明明:“我的体重是30千克。”爸爸:“我的体重是70千克。”

师引导:如果把明明体重平均分成两份,一份是水,另一份是其他物质,这时候我们就可以说:明明体内水分和其它物质的比是多少?

2.师继续引导:实际上,人体内水分与其他物质不是平均分配的,而是按一定的比来分配的。课件继续呈现信息:科学研究表明,儿童体内水分与其它物质的比是4:1;成年人体内水分与其他物质的比是7:3。

3.师:根据以上信息,你能提出什么数学问题?

生提问题:明明体内含的水分及其他物质各有多少千克?爸爸体内含的水分及其他物质各有多少千克?

【设计意图:从学生已经学过的“平均分”问题入手,找准知识的生长点,使学生体会到按比例分配问题是“平均分”问题的发展,从而初步理解按比例分配的含义。】

二、自主探究,解决问题

1.理解4:1的意义

师:弄清4:1的意思我们可以用什么方法?(引出线段图)

(1)生独立思考。

(2)小组活动,研究4:1的意思。

(3)小组交流。演示线段图课件,回顾整理。学生根据题意,完整说说4:1的意义。

儿童体内,水分占()份,其它物质占()份,一共是()份。水分与体重的比是(),其它物质与体重的比是()。水分的千克数占体重的(),其它物质占体重的()。

【设计意图:《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”这一环节,使学生有了充分的探究时间和空间,在自主探索、亲身实践和合作交流的氛围中,解除困惑,弄清4:1的意思,并有机会分享自己和他人的想法。通过小组交流,又建立了按比分配的表象。最重要的是培养学生学会倾听和小组有序合作的学习习惯。】

2.借助线段图,解决问题。

师:我们借助线段图弄清了4:1的意思,知道了水分、其它物质和体重之间的关系,要解决这个问题还有困难吗?

生独立解答。师巡视,找到两种不同的方法,为接下来的交流做准备。

【设计意图:根据学生已有知识的特点,采用尝试教学法,给学生独立思考问题的空间和时间,使他们始终参与到探究问题、解决问题的过程中。然后安排他们交流解题思路,这样学生的学习更生动有效。在这个环节中,学生始终是学习的主题,教师是学习的组织者、引导者、合作者。同时培养学生敢于质疑和完整表达的习惯。】

3.全班交流,归纳两种不同的解题方法。生根据自己的理解用两种不同的方法解答。方法一:份数法

根据总份数是5份,用30/5表示出平均每份的千克数,再乘份数就得出了水分和其它物质的千克数。即:(1)求总份数;(2)先求一份是多少;(3)根据份数求出各部分的量。

方法二:分数法

运用分数乘法的知识解答,把要求的水分和其他物质的千克数转化成占体重的几分之几来表示,再根据求一个数的几分之几是多少用乘法计算的道理列式计算。即:(1)求总份数;

(2)求出各部分占总数的几分之几;

(3)根据分数乘法,求出各部分量。

【设计意图:通过对比总结,进一步归纳按比例分配在实际应用中的解题思路,理清各种数量间的相互关系。】

4.寻求方法,进行检验。

师:那我们做得对不对,怎么办?引出检验方法。

方法一:把求得的小明体内水分质量和其它物质的质量相加,看是否等于小明的体重。方法二:把求得的小明体内的水分和其它物质写成比的形式,看化简后是不是4:1。【设计意图:这一环节的设计意在培养学生解答问题后能养成及时检验的习惯。】

三、走进生活,体会按比例分配的意义。

1.学生用按比例分配的知识解决前面提出的问题:爸爸体内的水分有多少千克?

学生独立解决问题。2.生活中有许多按比例分配的例子,你都知道哪些?学生交流。

【设计意图:通过举生活中的实例,进一步加深学生对“按比例分配”的理解,巩固所学知识,明白它在生活中的广泛应用,体会数学与生活的练习。培养学生善于观察、注重积累的学习过程,做生活中的有心人。】

四、巩固练习,发展提高。练习一:基础题

1.一种糖水是糖与水按1:19的比例配制而成的。要配制这种糖水2千克,需要糖和水各多少千克?

练习二:变式题

2.某农药厂要生产新型农药,药与水的比是2:3.现在已经准备好药粉14千克,需要加水多少千克?

练习三:提高题

3.按建筑标准,建造楼房的混凝土中,水泥、黄沙和石子的比2:3:5时最牢固。学校要建造一栋教学楼,但现在水泥只有4吨,黄沙有12吨,石子却有24吨,总重40吨。如果由你负责质量的监理,你会怎么想?你将如何处理?

【设计意图:通过进一步练习,理清按比例分配问题的解题思路,体会按比例分配的重要意义,进而提高根据已有信息分析问题的能力,同时渗透做人的思想教育。】

五、课堂小结,反思提高。学了这节课,你有什么收获?

【设计意图:学生通过回顾学习过程,反思自己的表现,养成学习后能自我反思提高的学习习惯。】

比例的课件(篇4)

教学内容:

第75页的例5及相应的“试一试”,“练一练”,练习十四第1~4题。

教学目标:

1、知识与技能:理解按比例分配实际问题的意义,运用比的意义和基本性质解答有关按比例分配的实际问题。

2、过程与方法:由具体到抽象,掌握按比例分配解决问题的方法。

3、情感与态度:在学习中体验数学与生活的联系。

教学重点和难点:

理解按比例分配实际问题的意义,掌握解题的关键。

教学过程:

一、情景导入:出示例5中的实物图。

【提问】:图中共有30个方格,平均分成两份,一份涂上黄色,一份涂上红色,每种颜色涂多少格?如果红色涂20格,黄色涂10格,红色与黄色方格数的比是多少?

【强调】:在实际生活中,有时并不是把一个数量平均分,而是按一定的比来分配。这就是我们今天要学习的新知识——按比例分配的实际问题。板书课题:按比例分配的实际问题

二、探究新知:

1、教学例5

【提问】:3:2要表示的哪两个数量的比?这两个数量有什么样的联系呢?

【思考】:红色与黄色方格数的比是3:2,还可以怎么理解?

(1)学生讨论:

A、红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色。

B、红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

C、红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

(2)解答例5。

①学生尝试,用学过的知识来解答,并在学习小组内说明自己你的想法?

②展示方法

方法

一、3+2=5 30÷5×3

30÷5×2

方法

二、30×(3/2+3)

30×(2/2+3)

方法

三、30÷(1+2/3)

方法

四、30÷(1+3/2)

(3)比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

学生以小组为单位进行第二种方法的进一步研究:

红色与黄色方格数的比是3∶2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占。

(4)如何进行验证方法的正确与否?

学生讨论后回答:

A、可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看化简后是不是等于3∶2。

B、可以涂一涂,进行验证。

2、教学例5后的试一试。

出示试一试。 【提问】:1:2:3表示哪几个数量之间的比?一共有6份,三种颜色的方格数各占方格总数的几分之几?大家会解答吗?

学生独立完成,指名板演。学生说解题过程。师根据学生回答板演。

3、讨论与归纳:

(1)观察我们今天学习的两道题目有什么共同特点?

已知总数量和各部分量的比,求各部分量。

(2)怎么解答?

求总份数,各部分量占总数量的几分之几,最后求各部分量。

(3)我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题.

(4)【提问】:分谁?怎么分?

【板书】:把一个数量按照一定的比来进行分配.

三、巩固练习:

1、练一练第一题

学生独立解答,指名板演。完成后集体订正,让学生说说解题思路。

2、练一练第二题

【提问】:分配的是什么?按照什么要求来分配?

【指出】:把180块巧克力按照三个班的人数来分配,就是把180按照35:31:24来分配。

3、练习十四第1题。

4、练习十四第4题

【提问】:三角形的内角和是多少度?直角三角形中两个锐角的度数和呢?

四、布置作业:练习十四第

2、3题

五、总结

这节课你有什么收获?还有什么疑问?

六、板书设计:

按比例分配的实际问题

例5:

方法

一、3+2=5 30÷5×3

30÷5×2

方法

二、30×(3/2+3)

30×(2/2+3)方法

三、30÷(1+2/3)

方法

四、30÷(1+3/2)

已知总数量和各部分量的比,求各部分量。

求总份数,各部分量占总数量的几分之几,最后求各部分量。

“按比例分配的实际问题”教学反思

本节课是在学生学习了比与分数的联系、简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决实际问题的一个内容,它是“平均分”问题的扩,掌握了按比例分配的解题方法,不但可以有效地解决生活、生产中按比例进行分配的问题,也为以后学习的相关知识奠定了基础。

新课程理念表明:数学教学的价值并非单纯地通过积累数学事实来实现,它更多通过对重要的数学思想方法的领悟,对数学活动经验的条理化,对数学知识的自我组织等活动来实现,学生的数学学习,基本是一种符号化语言,与生活实际的相互融化与转化,并主动建构的过程。

本课以学生生活中最熟悉的一个小实验——“配制蜜水”引入,根据小实验记录“蜂蜜50克、开水150克、蜜水200克”让学生用分数或比提出问题表示三个数量的关系,再让他们口答解决其中的几个问题,沟通比与分数的联系,把发现知识内在联系的机会与权利还给学生。同时老师也以参与者的身份参与提出问题、引出与例2相类似的问题,设置“悬念”导入新课学习。

这样使学生意识到抽象的数学知识可以在现实生活中找到活生生的原型,“现实生活中蕴含着大量的数学信息”,感受到生活经验数学化与数学经验生活化,体现用数学思想与方法观察认识自然的客观世界与现实生活的真谛与价值之乐趣。

为了使学生通过解决具体问题能抽象概括形成普遍方法,指导他们观察分析这类题目的结构,理解按比例分配的意义,并讨论解答按比例分配应用题一般的解题规律。

①计算分配的总份数;

②找出各部分数量占总数的几分之几;

③运用分数乘法的意义解题。

正如皮亚杰的认识论认为:学生学习新知识的过程,就是用原有知识和经验对新知识进行同化与顺应的过程,即对新知信息进行提取、加工、理解、重组、吸收内化的过程。这一过程应有老师的组织、参与和指导,有同伴的合作、交流与探索,有主体主动参与经历知识的发生、发展,体验新知的建构、应用,方能有效实现。

学生的数学学习不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。本课采取小组合作、交流探索的学习形式,引导学生“在沟通比与分数的联系基础上,发现问题、独立思考提出问题、小组合作解决问题、交流探究发现新方法、分析反思归纳解题规律、运用新方法解决新问题”在发现问题视角多向性、解决问题策略多样性,以及主动与他人交流中选择合适策略、丰富自己数学活动经验过程中。

学会比较、分析、归纳、综合,促使数学思想方法的发展,经历数学知识的产生与发展,体验主动参与合作探究,建构新知的愉悦。获得数学知识与技能、过程与方法、情感态度与价值观的不同程度发展。

比例的课件(篇5)

教学基本

内容第76~77页练习十四的第5~9题

教学目的和要求

1.使学生进一步掌握“按比例分配问题”的解题方法。

2.进一步巩固比的知识,沟通比和分数、除法的关系。

3.在解决问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。

教学重点

及难点会正确计算“按比例分配问题”的简单问题。

运用数学知识灵活解决实际问题。

教学方法

及手段使学生在活动中进一步积累解决问题的经验。

学法指导

集体备课

预习教学

环节设计

一、基本练习

1.知识回顾与整理。

前几节课,你学会了哪些知识?

2.完成练习十四第5题。

3.完成练习十四第6题。

4.完成练习十四第7题。

引导思考:当药粉是400克时,水的克数与400克有什么关系?当水是400克时,药粉的克数与400克有什么关系?

二、综合练习

1.完成练习十四第8题

第(3)题要引导学生理解:当黄沙全部用完时,水泥用去黄沙的几分之几?石子用去黄沙的几分之几?

2.完成练习十四第9题

第(1)题先让学生说说面积是24平方厘米的长方形,长和宽分别是多少,再对照条件确定长和宽的比值

。第(2)题引导思考:已知长与宽的比是5:3,要知道长与宽分别是多少,必须先求出什么?

3.一辆客车和一辆货车同时从甲、乙两地相对开出,在离中点20千米的地方相遇,相遇时客车和货车所行路程的比是5﹕3,甲、乙两地相距多少千米?

反馈时,引导学生理解:客车与货车所行路程的差是40千米。

三、拓展练习

出示:

王大伯养了灰兔、白兔、黑兔共150只,已知白兔只数是灰兔只数的5/6,黑兔只数与白兔只数比是4:5,灰兔有多少只?

让学生说说已知哪些条件,已知灰兔、白兔、黑兔共150只,求灰兔有多少只?需要先求出什么?

业补充习题

板书设

执行

情况

与课

后小

比例的课件(篇6)

1.( )叫做比。

2.( )叫做比例。

4

135.甲数的是甲乙两数和的,甲乙两数的比是( )。 4513144.甲数×=乙数×60%,甲:乙=( : )。

6.在含糖25%的糖水中,糖与水的比是( )。

7.10克糖溶解在100克水中,糖和糖水重量的比是( )。

8.在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另

一个内项是( )。

式可以是( )。

10.在一个比例式中,两个外项都是质数,它们的积是39,一个内项

个内项是( )。

是这个积的20%,这个比例式可以是( )。

16.在比例3:10=18:60中,如果第二项增加它的,那么第四项必须2

1、

badcχ25=1.214 3、6.5:χ=3.25:4 2、 25:χ=:754

13、13:7=3431141=:χ 12、=χ:15 105496χ21112 14、6:χ=1:50% 15、=χ:14365

1.( )和( )的比叫做比例尺。

个( )。

A. 5:200 B.1:4000 C.5:0 D.1:4000厘米

5.在1的图纸上,一个正方形的面积为16平方厘米,它的实际面 1000

1、在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲乙两地的实际距离是780千米。

(1)求这幅图的比例尺,并用线段图表示。

(2)在这幅地图上量得A、B两城的`图上距离是5厘米,求A、B两城的实际距离。

2、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。

(1)求这间教室的图上面积与实际面积。

(2)写出图上面积和实际面积的比。并与比例尺进行比较,你发现了什么?

3.一个长方形机件长4.5毫米,宽2.4毫米,按8:1的比例尽画在图纸上,长和宽各应画多长?

4..在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。两列火车同时从甲、乙两地相对开出。已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇?

--

5..有两列火车同时从甲、乙两地相对开出,慢车每小时行70千米,快车每小时比慢车多行10千米,4小时后两车行全程的2/3。在比例尺是1:10000000的铁路运行图上,甲、乙两地之间的图上距离是多少厘米?

比和比例题型总结量A B两地的距离是2.2厘米,在另外一幅比例尺是1:2000000的地图上,A B两地的距离是多少?

比例的课件(篇7)

教学内容:人教版小学数学六年级下册内容

教学目标:

知识与技能:1.结合丰富的实例,认识反比例。2.能根据反比例的意义,判断两个相关联的量是不是反比例。

过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。

教学重点:认识反比例,根据反比例意义判断两个相关联的量是否成

反比例。

教学难点:认识反比例,根据反比例意义判断两个相关联的量是否成

反比例。

教具准备:电脑课件

教学过程:

一、复习引入

1、计算

2、判断下面各题中的两种量是否成正比例?为什么?

(1)文具盒的单价一定,买文具盒的个数和总价。

(2)一堆货物一定,运走的量和剩下的量。

(3)汽车行驶的速度一定,行驶的路程和时间。

3、说说什么是正比例。

师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?

二、出示学习目标

1.能根据反比例的意义,判断两个相关联的量是不是反比例。 2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。

3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。

三、指导自学

师:给你们讲个小故事:

有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真

聪明!嘿嘿??

过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!

学习提示:

独立思考?

1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”

2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?

合作学习

小组讨论上述的问题。

看书合作学习

1、把25页例2、例3的表格补充完整。

2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?

3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?

4、你知道什么是反比例吗?

四、学生自学

五、检查自学效果

让学生说说自学要求中的内容。

师归纳:两种相关联的量,一种量随着另一种量的变化而变化,

在变化过程中两种量的积一定,那么这两种量成反比例。

六、引导更正,指导运用

你们还找出类似这样关系的量来吗?”

学生:要走一段路,速度越慢(快),用的时间就越多(少) 运一堆货物,每次运的越多(少),运的次数就越小(多) 百米赛跑,路程100米不变,速度和时间是反比例;

排队做操,总人数不变,排队的行数和每行的人数是反比例; 长方体的体积一定,底面积和高是反比例。

七、当堂训练

基础练习

1、填空

两种 _____ 的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

(4)圆柱体的体积一定,底面积和高。

(5)小林做10道数学题,已做的题和没有做的题。

(6)长方形的长一定,面积和宽。

(7)平行四边形面积一定,底和高。

提高练习

1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm9 8765

宽/cm1

四、小结

通过这节课的学习,你有什么收获?

这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。

板书:反比例

相关联,一个量变化,另一个量也随着变化积一定

xy=k(一定)

比例的课件(篇8)

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。

【教学目标】

1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。

2、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。

【教学重点】比例的意义。

【教学难点】求比值判断两个比能否组成比例,并能正确地组成比例。

【教学准备】多媒体课

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例?

表示两个比相等的式子叫做比例。

2、今天是星期天,小瑜和小丽一起到文具店去买东西。

(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?

(2)反馈:

①谁买的本子便宜些?说说你的理由。

②还有别的方法吗?

③这两个比能组成比例吗?为什么?

二、关键点拨

1、比例的意义。

出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时)25

路程(千米)80200

根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?

2、小结:判断两个比能否组成比例,最关键是看什么?

3、比和比例有什么区别?

生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

三、巩固练习

1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。

2、独立完成“做一做”第2题后反馈交流。

3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?

反馈:

(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。

(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

比例的课件(篇9)

人教版23页至24页例1以及相应的“做一做”。

1、掌握用正比例的方法解答相关应用题。

2、透过解答应用题使学生熟练地决定两种相关联的量是否成正比例,从而加深对正比例好处的理解

3、培养学生分析问题、解决问题的潜力。

掌握用正比例的方法解答应用题

能正确决定两种相关联的量成什么比例,正确列出比例式。

一、激趣导入

1、在上新课之前,先考考大家对保亭县的认识。你明白保亭县最高的建筑物是什么?它位于何处?

2、对于保亭县最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量电视塔的大概高度。这天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算电视塔的大概高度。看谁学得最棒。

二、自学互动

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)小组合作学习交流,边汇报边板书

140÷2×5

=70×5

=350(千米)

答:________________。

3、适时点拨

这两种方法都合理,还能够有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)用比例解答应用题与用算术方法解答应用题的解法不同,但计算结果相同,如果题目中没有要求的,我们采取任何一种方法都能够,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析决定

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

四、测评训练

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:“已知公路长400千米,需要行驶多少小时?”该怎样解答?

②让学生解答改编后的应用题,群众订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

改编例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=400/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

五、总结全课

同学们,你们这天学到了什么?有什么收获呢

比例的课件(篇10)

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、创设情境

同学们,我们生活在深圳这个国际大都市相信对“投资”和“创业”这两个词一定不陌生吧?谁给大家说说。

1、PPT出示:李阿姨和张阿姨合伙开了家书店,第一年,她们各投资5万元,经过一年的苦心经营,除去交税,发工资和其他费用,共获利润10万元,你们说,她们各应分得利润多少万元?

2、小结:刚才两位阿姨由于投资额相同,所以他们获得的利润要按1:1来分配,这种分配方式也就叫平均分。

3、PPT出示:第二年,李阿姨仍然投资了5万元,张阿姨投资了4万元,除去一切开支,共获利润18万元。这一次,你说她们的利润该怎么分合理呢?

(组织交流)

师:这里的利润要按投资额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位阿姨应该按怎样的比来分配?(板书:按投资数的比5:4进行分配)

2、谁能用自己的语言说说5:4的具体含义。

3、谁能用算式表示两位阿姨各应分得多少万元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第75页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、此时用PPT出示“学习内容”“学习目标”和“导学提纲”。

学习内容:苏教版小学数学六年级上册第75页。

学习目标:

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲:

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解“按照1:2:3涂成红、黄、绿三种颜色”这句话的含义?

5、“练一练”第2题是把180块巧克力按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

预设:

(1)这里的3:2,也就是在30个方格,红色方格占3份,黄色方格占4份,一共有5份,红色方格占了方格总数的3/5,黄色方格占方格总数的2/5。求红色方格有多少个,就是求30的3/5是多少,求黄色方格有多少个,就是求30的2/5是多少。

(2)把30个方格平均分成5份,3份是红色,2份是黄色。总份数3+2=5,红色方格为30÷5×3=18(格),黄色方格为30÷5×2=12(格)。

2、展示例5的解题思路及方法(结合图)

3、展示“试一试”的解题方法

4、说一说例5与“试一试”的相同点与不同点。

5、“练一练”第2题“练一练”与“试一试”的相同点与不同点。

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:

(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。

(2)根据份数先求总份数,再求每份数,最后求几份数。

(板书:比——分数各种数量占总数量的几分之几,用乘法;比——份数,先求总份数,再求每份数,最后求几份数。)

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4:3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4:7:9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、保税区小学六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结:

学了这节课,你有什么收获?

七、课堂作业:

76页,1、2、3、4。

比例的课件(篇11)

教学内容

人教版教材第33-34页比例的意义和基本性质。

教学目标

1、理解比例的意义,认识比例各部分的名称。

2、能运用比例的意义判断两个比能否组成比例,并会组比例。

3、理解并会应用比例的基本性质。

教学过程

一、情境导入,复习比的知识

教师出示课件,结合画面引入。

师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

教师板书课题:比例的意义和基本性质。

师:说到比例,我们很容易想起前面学过??(教师拖长声音)

生:比(几乎异口同声地)

师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、自主探究,学习比例的意义

1、探求共性,概括意义

师:刚才第三题10:6 与 4.5:2.7 的比值有何特点?

生1:我发现这两个比的比值相等 。 师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生2:用等号。(师把左右两个中间板书 = )

师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

生:比例(有几个学生低声说)

师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

师:你现在想知道什么叫比例吗?

生:想(学生声音响亮,愿望强烈)

师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式: a:b=c:d或 = (b、d不能为0)

2、根据意义,判断比例

师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

生:看比值是不是相等

师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10 和 9∶15 (2)20∶5 和 1∶4

师:比一比 看谁说的又快又好!

生1:因为 6∶10 = 0.6

9∶15 = 0.6

所以 6∶10 = 9∶15

生2: 因为 20∶5 = 4

1∶4 = 0.25

所以 20∶5和1∶4不能组成比例. (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

师:请同学们自己独立完成学案上的课堂训练

(一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、合作探究,学习比例的基本性质

1、组织看书,认识名称

师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

(一)第2题进行巩固。

2、活动探究,总结性质

小组活动内容:

①观察比例的两个内项与两个外项,算一算,你发现了什么。

②如果把比例写成分数形式,是否也有上面发现的规律?

③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

师:请汇报你发现的规律。

生1:两个外项的积等于两个内项的积

生2:不对,老师,我有个反例:0:1=1:0 0×0=0,1×1=1,所以??

还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

生2:那我0:1=0:2 (很着急的改了)

生4:那0×2=0 ,1×0=0,还是两个外项积等于两个内项积。

师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的积。)

师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

3、应用性质,自主判断

师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15 (2)20∶5和1∶4)

师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

(二)。

4、总结方法,辨析概念

师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。

师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

生2:比有两项,比例有四项。

生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

师:同学们的概括能力很强,你们真的很棒!

师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 [设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

四、灵活运用,大显身手

师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

[设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

五、归纳小结,交流收获

师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

[设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

比例的课件(篇12)

一、说教材

《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。课时教学目标分三个围度:1、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

3、情感:培养学生良好的学习习惯。

教学重难点:1、认识解比例的意义。2、应用比例的基本性质解比例。

课前准备了教学多媒体;采用了尝试教学法、练习法、讲解法和自学辅导法等。

二、说教学过程

复习引新

1.做第32页复习题。出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定()里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

4:3=2:1.5=x:4=1:2

提问;根据积相等的式子,你能求出最后一题里的x吗?

3.引入新课。在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

教学新课

1.教学例2。

出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2.教学例3。

出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?

巩固练习

1.做“练一练”。

指名四人板演。其余学生分两组,每组两道题,做在练习本上。

2.做练习六第8题。让学生做在课本上,指名口答。

3.做练习六第l0题。学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

4.做练习六第11题。学生口答、老师板书,看能写出多少个比例。

讲解思考题

提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

课堂小结。

这堂课学习的什么内容?应用比例的基本性质怎样解比例,

布置作业

三、说课后反思

虽然本课教学中紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。但是由于自身的语言没有激情因而课堂气氛还有点沉没,以后我会在这个方面努力。

本文的网址是//m.zfw152.com/a/5851222.html

相关推荐
最新更新
餐饮行业晚安问候语15句

餐饮行业晚安问候语 餐饮行业问候语 07-22

早安心语问候情人52条

早安问候 07-22

比例的应用课件

04-14

孤独语录短句男孩精选(32句)

孤独语录男孩短句 语录男孩短句 07-22

七夕表白好姐妹的句子

七夕表白姐妹句子 07-22

比例尺课件

04-14

勇争先活动总结九篇

争先活动总结 07-22

祝福情人的句子锦集53句

祝福情人句子 07-22

舔狗语录经典短句收藏(70条)

经典舔狗语录 舔狗语录 07-22

大学实习期总结推荐

大学实习期总结 07-22

对于感恩的句子经典短语60句

对于感恩短语句子 感恩短语句子 07-22

推荐访问

全部分类