<

趣祝福 · 祝福语大全 · 春联教学设计

趣祝福祝福语大全作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写才好呢?以下是小编精心整理的初中数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学教学设计案例及评价 篇1

一、背景

新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。

二、教学片段

在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。

出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?

我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:

爸爸体重>小宝体重+妈妈体重

爸爸体重<小宝体重+妈妈体重+一副哑铃重量

我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,

我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:

一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?

设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。

三、反思

本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。

本节课我有几个深刻的感受:

1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。

2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。

3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。

4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。

初中数学教学设计案例及评价 篇2

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.数学思考

通过观察,比较,归纳等得出有理数加法法则。

3.解决问题

能运用有理数加法法则解决实际问题。

4.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点

会用有理数加法法则进行运算.

6.难点

异号两数相加的法则.

二.教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三.学校与学生情况分析

冲坡中学是乐东县利国镇的一所完全中学,学生都来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四.教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为

4+(-2),黄队的净胜球为1+(-1)。

这里用到正数与负数的加法。

(二)、师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

两个有理数相加,有多少种不同的情形?

为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)、应用举例 变式练习

例1 口答下列算式的结果

(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);

(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.

学生逐题口答后,师生共同得出

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9) (和取负号,把大的.绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)、小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1.计算:

(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);

(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;

(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);

(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.

4.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

五.教学反思

“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的`练习,如本教学设计.

现在,试比较这两类教学设计的得失利弊.

第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.

第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.

这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

六.点评

潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

初中数学教学设计案例及评价 篇3

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的`定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学教学设计案例及评价 篇4

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标

(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课

从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

设姚明投进了x个两分球,罚进了y个球,可列出方程。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

设易建联投进了x个两分球,y个三分球,可列出方程。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习而且“会学”“乐学”。)

2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

师:根据概念,你觉得二元一次方程应具备哪几个特征?

活动:你自己构造一个二元一次方程。

快速判断:下列式子中哪些是二元一次方程?

①x2+y=0②y=2x+

4③2x+1=2x ④ab+b=4

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的`是让学生在记法上体会“一对未知数的取值”的真正含义。)

二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

例:已知方程3x+2y=10,

(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

(3)用含x的代数式表示y;

(4)用含y的代数式表示x;

(5)当x=负2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)

初中数学教学设计案例及评价 篇5

摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。

关键词:相切;环节说明;分层体现;

一、案例背景介绍

(一)教学环境

在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。

(二)学生情况

我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。

(三)教材情况

本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。

二、案例内容设计及说明

环节一:复习引入

通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切

环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。

环节二:新知探究

活动

1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。

环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。

活动

2、将判定的题设和结论互换后的探究。

环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。

环节三:巩固和应用

通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。

环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。

环节四:课堂小结

在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。

环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。

环节五:拓展练习

通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。

环节六:作业布置

通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。

环节说明:作业

1、重点面向学困生考察其掌握基础的程度。作业

2、针对待优生夯实基础的基础上,提高其运用能力。作业

3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。

三、案例分析与反思

实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。

初中数学教学设计案例及评价 篇6

一、教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯。

二、教学重点和难点

一元一次方程解简单的应用题的方法和步骤。

三、课堂教学过程设计

(一)从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

例1 某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3。

答:某数为3。

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4。

解之,得x=3。

答:某数为3。

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以x=50 000。

答:原来有50 000千克面粉。

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的',可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5。

其苹果数为3× 5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)

(三)课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

(四)师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆。

(五)作业

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

初中数学教学设计案例及评价 篇7

一、教学目标设计

知识与技能

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

过程与方法

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法情感态度与价值

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

二、教学重点难点

教学重点

探索和证明勾股定理

教学难点

用拼图的方法证明勾股定理

三、教学方法

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

四、教具准备

课件、三角板

五、教学过程设计

教学环节1

教学过程:创设情境探索新知

教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:

学生思考回答

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节2

教学过程:

实验操作获取新知归纳验证完善新知

教师活动:出示课件,引导学生探索

学生活动:猜想实验合作交流画图测量拼图验证

设计意图:渗透从特殊到一般的`数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望.给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。

教学环节3

教学过程:解决问题应用新知

教师活动:出示例题和练习

学生活动:交流合作,解决问题

设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识.

教学环节4

教学内容:

课堂小结

巩固新知布置作业

教师活动:引导学生小结

学生活动:讨论交流、自由发言

设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦.

通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导.

六、板书设计

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么a2+b2=c2。

七、习题拓展

如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。(1)求梯子上端A到墙的底端B的距离AB。

(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

八、作业设计

1、收集有关勾股定理的证明方法,下节课展示、交流.

2、做一棵奇妙的勾股树(选做)

初中数学教学设计案例及评价 篇8

一、案例实施背景

本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).

二、案例主题分析与设计

本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.

2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系

3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.

四、案例教学重、难点

1、重点:圆的两种定义的探索,能够解释一些生活问题.

2、难点:圆的运动式定义方法.

五、案例教学用具

1、教具:多媒体课件、圆规、细线、铅笔。

2、学具:圆规

六、案例教学过程

(一)创设问题情境,激发学生兴趣,引出本节内容

1、如图1,观察下列图形,从中找出共同特点.

图1

2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.

3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.

(二)问题引申,探究圆的定义,培养学生的探究精神

1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)

图2

2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.

3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.

4、师生共同归纳:

(1)圆上各点到定点(圆心)的距离都等于定长(半径);

(2)到定点的距离等于定长的点都在同一个圆上.

(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.

5、讨论圆中相关元素的定义.

(1)如图3,你能说出弦、直径、弧、半圆的定义吗?

图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.

(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;

弧:圆上任意两点间的部分叫作圆弧,简称弧;

AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;

半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.

优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;

. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC

(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)

1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.

2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.

图4

(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由

2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?

图5

4、师生活动设计:首先求出半径,然后除以20即可.

解答:树干的半径是23÷2=11.5(cm).

平均每年半径增加11.5÷20=0.575(cm).

(五)归纳小结、布置作业

小结:圆的两种定义以及相关概念.

作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况

七、教学反思

1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。

2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计案例及评价 篇9

●教学目标

(一)教学知识点

1.平移的定义

2.平移的基本性质

(二)能力训练要求

1.通过具体实例认识平移,理解平移的基本内涵.

2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.

(三)情感与价值观要求

经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

●教学重点

平移的基本性质.

●教学难点

平移的基本内涵的理解.

●教学方法

探索、发现法.

●教具准备

图片:一些游乐园的图片、辘轳、电梯等.

电脑演示:平移的过程,粒子运动及行星运转等.

投影片四张:

第一张:想一想,议一议(记作投影片§3.1A);

第二张:想一想(记作投影片§3.1B);

第三张:平移的性质(记作投影片§3.1C);

第四张:例1(记作投影片§3.1D).

●教学过程

Ⅰ.巧设情景问题,引入课题

[师]同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?

[生齐]也走了200米.

[师]很好.其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的.老牛上的辘轳(出示图片);还是刚刚耸立起的高楼大厦里的电梯,(出示图片),无论是微观世界里的粒子运动(电脑演示),还是浩翰宇宙中的行星运转(电脑演示).其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!

从今天开始,我们就来探索第三章:图形的平移和旋转.

Ⅱ.讲授新课

[师]下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)

(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?

[生齐]传送带上的电视机的形状、大小在运动前后没有发生改变.

手扶电梯上的人也没有变化.

[师]很好,我们再看(电脑演示):

在传送带上,如果电视机的某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?

[生]电视机的其他部位也向前移动,也移动了80cm.

[师]好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)

如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?

[生]四边形ABCD与四边形EFGH的形状、大小相同.

[师]很好,那同学们来想一想,议一议(出示投影片§3.1A).

传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?

初中数学教学设计案例及评价 篇10

一、教学设计

1. 教学目标

知识与技能:让学生掌握初中数学的基本概念、定理和公式,并能够应用到实际问题中。

过程与方法:通过探究式学习、合作学习等方式,培养学生的思维能力、创新能力和解决问题的能力。

情感态度与价值观:激发学生对数学的兴趣和热爱,培养他们的科学精神和探索精神。

2. 教学内容

以初中数学教材为基础,结合学生的实际情况和兴趣爱好,选择适当的教学内容。例如,可以选择与日常生活密切相关的数学问题,或者具有挑战性的数学难题,以激发学生的学习兴趣。

3. 教学方法

采用多种教学方法相结合,如讲授法、讨论法、实验法等。通过引导学生自主思考、合作交流,让他们在探究中发现问题、解决问题,从而提高他们的数学素养。

4. 教学过程

(1)导入新课:通过生活实例或趣味问题,激发学生的学习兴趣,引出本节课的主题。

(2)知识讲解:系统讲解数学概念、定理和公式,注重理论与实践相结合,让学生理解数学知识的本质和应用。

(3)探究实践:设计具有层次性和挑战性的数学问题,引导学生自主思考、合作交流,培养他们的探究能力和创新精神。

(4)总结归纳:对本节课的知识进行梳理和归纳,强调重点难点,帮助学生巩固所学知识。

(5)作业布置:布置适量的课后作业,让学生巩固所学知识,提高数学应用能力。

二、教学反思

1. 教学效果

通过本节课的教学,大部分学生能够掌握所学的数学概念、定理和公式,并能够应用到实际问题中。同时,学生的思维能力、创新能力和解决问题的能力也得到了提高。但是,仍有部分学生在理解和掌握上存在一定的困难,需要进一步加强辅导和指导。

2. 教学问题

在教学过程中,我发现一些问题需要改进。首先,在教学方法上,我应更加注重学生的主体地位,多引导学生自主思考和探究。其次,在教学内容上,我应更加注重与学生的实际生活相联系,让数学知识更加贴近学生的实际需求。最后,在教学评价上,我应更加注重学生的'全面发展,关注学生的个体差异,采用不同的评价方式和方法。

3. 教学改进

针对以上问题,我将采取以下措施进行改进。首先,加强与学生的互动和交流,多听取学生的意见和建议,了解他们的学习需求和困难。其次,注重培养学生的自主学习能力和合作精神,让他们在探究中发现问题、解决问题。最后,注重学生的个体差异,采用不同的教学方法和评价方式,让每个学生都能够在数学学习中取得进步。

总之,通过本次初中数学教学设计与反思,我深刻认识到数学教学的重要性和挑战性。我将继续努力探索和实践,不断提高自己的教学水平和能力,为学生的全面发展贡献自己的力量。

以上祝福语大全的精彩内容由祝福语网zfw152.com提供,感谢您阅读《初中数学教学设计案例及评价(推荐10篇)》相关内容,如需访问更多关于春联教学设计内容,请访问春联教学设计专题!

相关推荐
最新更新
元宵日记作文小学五年级

铃声五年级小学作文 西湖五年级小学作文 10-28

线下辞职报告

绿叶辞职报告 军人辞职报告 10-28

请假报告(优选6篇)

老师请假说说 老师请假心情说说 10-28

幼儿园入园家长寄语(合集六十三句)

幼儿园家长毕业寄语 幼儿园家长孩子寄语 10-28

国际扫盲日手抄报内容大全(经典二篇)

国际商务合同 妇女节手抄文案 10-28

2024预备党员思想汇报第2季度

year台词 预备开业句子 10-28

祝发财又不俗的句子68句

老公发财句子 感恩恭喜发财句子 10-28

六一儿童节活动小总结(汇集七篇)

六一儿童节绘画文案 六一儿童节活泼文案 10-28

幼儿园庆元旦活动美篇内容(必备七篇)

庆元旦主题文案 欢庆元旦优美句子 10-28

全部分类