二次根式教案 篇1

一、情境导入
问题1:你能用带有根号的式子填空吗?
(1)面积为3的正方形的边长为xx,面积为S的正方形的边长为xx
(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为xxm。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=xx。
问题2:上面得到的式子,分别表示什么意义?它们有什么共同特征?
二、合作探究
探究点一:二次根式的定义
下列各式中,哪些是二次根式,哪些不是二次根式?
解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数。
解:由于xx=,(x≤3),(ab≥0)中的根指数都是2,并且被开方数为非负数,因此它们都是二次根式的形式。另外,由于(x≥0)的限制条件,它的被开方数必须小于0,所以不满足二次根式的条件。
方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:
(1)带二次根号;
(2)被开方数是非负数。
探究点二:二次根式有意义的条件
类型一 根据二次根式有意义求字母的取值范围
求使下列式子有意义的x的取值范围。
解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解。
解:(1)由题意得4-3x>0,解得x<.当x<时,有意义;
(2)由题意得解得x≤3且x≠2.当x≤3且x≠2时,有意义;
(3)由题意得解得x≥-5且x≠0.当x≥-5且x≠0时,有意义。
方法总结:含二次根式的式子有意义的条件:
(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零。
类型二 利用二次根式的非负性求解
(1)已知a、b满足+|b-|=0,解关于x的方程(a+2)x+b2=a-1;
(2)已知x、y都是实数,且y=++4,求yx的平方根。
解析:(1)根据二次根式的非负性和绝对值的非负性进行计算即可;(2)依靠二次根式的非负性来确定x的值,进而推导出y的值,然后求得yx的平方根。
解:(1)根据题意得解得则(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;
(2)根据题意得解得x=3.则y=4,故yx=43=64,±=±8,∴yx的`平方根为±8。
方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0。
探究点三:和二次根式有关的规律探究性问题
先观察下列等式,再回答下列问题。
①=1+-=1;
②=1+-=1;
③=1+-=1.
(1)请你根据上面三个等式提供的 信息 ,写出的结果;
(2)请你按照上面各等式反映的规律,试写出用
含n的式子表示的等式(n为正整数)。
解析:(1)观察三个等式可知,等号右边的第一个加数都是1,第二个加数为一个分数,假设该分数的分母为n,那么第三个分数的分母就是n+1。结果表示为一个带分数形式,整数部分为1,分数部分的分子也为1,分母则为前一项分数的分母的乘积;(2)基于上述观察得到的规律,可以写出表达这一规律的式子。
解:(1)=1+-=1;
(2)=1+-=1(n为正整数).
方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来。
三、板书设计
1.二次根式的定义
一般地,我们把形如(a≥0)的式子叫做二次根式。
2.二次根式有意义的条件
被开方数(式)为非负数;有意义?a≥0。
通过将新的数学知识与之前学过的知识进行对比和联系,并结合现实生活中的实际问题,引入二次根式的概念。在教学过程中,让学生认识到研究二次根式是非常实用的,同时也能感受到数学与现实生活之间的密切联系,从而激发学生对数学学习的兴趣。
二次根式教案 篇2
一、教学目标
1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2、会进行简单的二次根式的除法运算;
3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4、培养学生利用二次根式的除法公式进行化简与计算的能力;
5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6、通过分母有理化的教学,渗透数学的简洁性。
二、教学重点和难点
1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。
2、难点:二次根式的除法与商的算术平方根的关系及应用。
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比。
四、教学手段
利用投影仪。
五、教学过程
(一)引入新课
学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根。
一般地,有(a≥0,b>0)
商的算术平方根等于被除式的`算术平方根除以除式的算术平方根。
让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。
二次根式教案 篇3
一、教学目标:
(一)知识与技能:
1.了解二次根式的概念,会确定二次根式成立的条件。
2.会用二次根式性质进行有关计算。
3.
了解逆用公式在实数范围内因式分解。
(二)过程与方法:体验性质的推导过程,感受由特殊到一般的方法。
(三)情感态度:激发对数学的兴趣。
二、教学重点:
二次根式成立的条件,双重非负性;
用性质进行计算。
三、教学难点
性质的逆用。
四、教学准备:课件
五、教学过程
(一)复习提问
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所满足的条件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:
这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?
请分析:引导学生答如时才成立。时才成立,即a取任意实数时都成立。我们知道如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.
例1
计算:
分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的`运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。
例2
把下列非负数写成一个数的平方的形式:
(1)5;
(2)11;
(3)1.6;
(4)0.35.
例3
把下列各式写成平方差的形式,再分解因式:
(1)4x2-1;(2)a4-9;
(3)3a2-10;(4)a4-6a2+9.
解:(1)4x2-1
=(2x)2-12
=(2x+1)(2x-1).
(2)a4-9
=(a2)2-32
=(a2+3)(a2-3)
(3)3a2-10
(4)a4-6a2+32
=(a2)2-6a2+32
=(a2-3)2
(三)小结
1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.
2.关于公式的应用。
(1)经常用于乘法的运算中.
(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.
(四)练习和作业
练习:
1.填空
注意第(4)题需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.
2.实数a、b在数轴上对应点的位置如下图所示:
分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.
3.计算
二、作业
教材P.172习题11.1;A组2、3;B组2.
补充作业:
下列各式中的字母满足什么条件时,才能使该式成为二次根式?
分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:
(1)由-|a-2b|≥0,得a-2b≤0,
但根据绝对值的性质,有|a-2b|≥0,
∴
|a-2b|=0,即a-2b=0,得a=2b.
(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0
∴
(m2+1)(m-n)≤0,又m2+1>0,
∴
m-n≤0,即m≤n.
二次根式教案 篇4
1教学目标
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3)理解最简二次根式的概念
2学情分析
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
3重点难点
重点:二次根式的乘法法则与积的算术平方根的性质.
难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
4教学过程
4.1第一学时
教学活动
活动1【导入】复习提问,探究规律
问题1二次根式的乘法法则是什么内容?化简二次根式的'一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.
2.观察思考,理解法则
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。
活动2【讲授】观察思考,理解法则
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。Zfw152.cOm
活动3【活动】例题示范,学会应用
例1计算:(1);(2);(3)。
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?
【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,
问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。
问题6课件展示一组二次根式的计算、化简题。
【设计意图】让学生用总结出的结论进行二次根式的运算。
活动4【练习】巩固概念,学以致用
例2教材第9页例7。
师生活动提问本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
活动5【测试】目标检测设计
1.在、 、中,最简二次根式为。
【设计意图】考查对最简二次根式的概念的理解。
2.化简下列各式为最简二次根式:;。
【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。
3.化简:(1);(2)。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。
活动6【作业】布置作业
教科书第10页练习第1,2,3题;
教科书习题16。2第10,11题。
二次根式教案 篇5
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学重点:二次根式混合运算算理的理解。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
一、情境诱导
《二次根式混合运算习题课》教学设计-杨桂花
二、练习指导
(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)
练习提纲:《二次根式混合运算习题课》教学设计-杨桂花
三、展示归纳
1、学生汇报解题过程,生说师写;
2、发动其他学生评价补充完善;
3、师画龙点睛强调:
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的.混合运算。
四、变式练习
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)
《二次根式混合运算习题课》教学设计-杨桂花
五、小结
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)
六、布置作业
《二次根式混合运算习题课》教学设计-杨桂花
二次根式教案 篇6
一、教学目标:
(一)知识与技能:
1、了解二次根式的概念,会确定二次根式成立的条件。
2、会用二次根式性质进行有关计算。
3、了解逆用公式在实数范围内因式分解。
(二)过程与方法:体验性质的推导过程,感受由特殊到一般的方法。
(三)情感态度:激发对数学的兴趣。
二、教学重点:
二次根式成立的.条件,双重非负性;
用性质进行计算。
三、教学难点
性质的逆用。
四、教学准备:
课件
五、教学过程
(一)复习提问
1、什么叫二次根式?
2、下列各式是二次根式,求式子中的字母所满足的条件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数、
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:
这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?
请分析:引导学生答如时才成立。时才成立,即a取任意实数时都成立。我们知道如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了、
(三)小结
1、继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题、
2、关于公式的应用。
(1)经常用于乘法的运算中、
(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题、
精选阅读
数学二次根式教案收藏
教师的责任之一是制作自己的教案和课件,但教师也必须意识到教案和课件不是随便写写就可以的。学生的反馈可以给教师提供反思课堂教学的机会。我们已经根据您的要求为您选择了以下相关资料:“数学二次根式教案”,希望以下内容能够给大家提供启发。欢迎阅读参考!
数学二次根式教案 篇1
1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
1、重点:准确理解二次根式的概念,并能进行简单的计算。
学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。
(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
反思:
数学二次根式教案 篇2
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
2)看来二次根式有的`能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
数学二次根式教案 篇3
教案
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第3页——4页内容,完成下列任务:
1、请比较与0的大小,你得到的结论是:________________________。
2、完成3页“探究”中的填空,你得到的结论是____________________。
3、看例2是怎样利用性质进行计算的。
4、完成4页“探究”中的填空,你得到的结论是:____________________。
5 、看懂例3,有困难可与同伴交流或问老师。
课时作业
教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)
数学二次根式教案 篇4
二次根式的应用主要体现在两个方面:
1.利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
2.利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
(1)设计一些规律探索问题提高学生的想象力和创造力;(2)联系生活实际设计一些方案探究题。
(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;
(2)不会应用数学的知识解决实际生活中的问题。
【典型例题】小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长、宽比为3:2,不知道能否裁出来,正在发愁你能帮他解决吗?
二次根式的运算主要是研究二次根式的乘除和加减.
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
(4)二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算.
注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数.
数学二次根式教案 篇5
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
∴ CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∴ ∠AFD=∠CBE.
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
数学二次根式教案 篇6
初中数学题目精选之二次根式题,相信朋友们的回答都很轻松吧。接下来会为大家继续带来更全更精的`初中数学题精选,同学们准备好答题了吗。
9.把下列各式分解因式:
③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2
10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.
11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.
答案:
9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2
5.已知9x2-6xy+k是完全平方式,则k的值是________.
7.-4x2+4xy+(_______)=-(_______).
8.已知a2+14a+49=25,则a的值是_________.
答案:
5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12
数学二次根式教案 篇7
① 二次根式的概念:
一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a 称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:
当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:
1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:
积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:
商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:
化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:
1、将被开方数中能开得尽方的因数或因式进行开方;
2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;
3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:
(1)被开方数中不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:
(1)先把每个二次根式都化成最简二次根式;
(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
圆是以圆心为对称中心的中心对称图形。
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
①把0以外的数分为正数和负数。0是正数与负数的分界。
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
①具有原点,正方向,单位长度的直线叫数轴。
①只有符号不同的数叫相反数。
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
数学二次根式教案 篇8
1.理解分母有理化与除法的关系.
2.掌握二次根式的分母有理化.
3.通过二次根式的分母有理化,培养学生的运算能力.
三、重点、难点解决办法
二次根式混合运算的步骤、运算顺序、互为有理化因式.
例1 说出下列算式的运算步骤和顺序:
(1) (先乘除,后加减).
(2) (有括号,先去括号;不宜先进行括号内的运算).
(3)辨别有理化因式:
化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的`有理化因式的方法(依据分式的基本性质).
例如, 、 、 等式子的化简,如果分母是两个二次根式的和,应该怎样化简?
化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.
注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.
通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:
,现将分母有理化,就可以了.
,学生易发生如下错误,将式子变形为 ,而正确的做法是 .
1.强调二次根式混合运算的法则;
2.注意对有理化因式的概括并寻找出它的规律.
(1)如单独一项 的有理化因式就是它本身 .(2)如出现和、差形式的: 的有理化因式为 , 的有理数化因式为 .
数学二次根式教案 篇9
二次根式这节课的重点是了解二次根式的定义,会判断一个根式是不是二次根式,难点是二次根式成立的条件,和利用进行计算。
通过课前备学生,我了解到,学生接受起来并不是太顺利,所以,这一节课我进行了两块的内容,一是二次根式的定义,理解它并会用定义进行判断;二是二次根式成立的`条件,让学生掌握如何使二次根式有意义并会正确书写步骤。
接下来重点进行了确定二次根式中被开方数所含字母的取值范围这一知识点。
这里面要掌握一点,那就是若一个式子是二次根式,则它的被开方数一定是非负数,利用这一条件能确定二次根式中被开方数所含字母的取值范围。
特别的,含有分母的二次根式取值时易忽略分母不能为零这一条件。
由于取值范围的确定与不等式(组)有关,所以,在学习之前又进行了不等式的性质及解法进行了复习,因为前几天让学生复习过,且一直在温习,所以这一点学习并没有感觉到困难。
数学二次根式教案锦集十五篇
教案课件是老师不可缺少的课件,我们需要静下心来写教案课件。只有写好每份教案课件,老师在教学过程也能更得心应手。这是趣祝福经过精心挑选的一篇“数学二次根式教案”文章,即便是有用的建议也需要结合实际情况供参考!

数学二次根式教案 篇1
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
2)看来二次根式有的`能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
数学二次根式教案 篇2
1教学目标
1.知识与技能
(1)理解二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
(2)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
2学情分析
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
3重点难点
教学重点:
1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点:
4教学过程 4.1 第一学时 教学活动 活动1【导入】21.1二次根式
二次根式的概念及其运用
活动复习引入
探索新知
活动巩固练习
教材P练习3.
活动应用拓展
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
16.1 二次根式
课时设计 课堂实录
16.1 二次根式
1第一学时 教学活动 活动1【导入】21.1二次根式
二次根式的概念及其运用
活动复习引入
探索新知
活动巩固练习
教材P练习3.
活动应用拓展
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
数学二次根式教案 篇3
本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。
1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。
2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。
3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。
学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃, ,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。
教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。
鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:
(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:
让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。
(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。
(三)在个体与群体的`互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。
学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。
=; =.
2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。
答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为
多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为
(a+b)(m+n)=am+an+bm+bn,
; 。
在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。
在进行二次根式的混合运算时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如
这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出 ,等等.
1.掌握二次根式的混合运算.
2.掌握乘法公式在混合运算的应用.
3.通过二次根式的混合运算,培养学生的运算能力.
数学二次根式教案 篇4
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1.菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2.菱形在现实中的实例较多,在讲解菱形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5. 由于菱形和菱形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6.在菱形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.掌握菱形的性质.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.通过教具的演示培养学生的学习兴趣.
5.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
6.通过菱形性质的学习,体会菱形的图形美.
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
数学二次根式教案 篇5
本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。
本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。
1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。
2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。
3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。
学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃, ,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。
教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。
鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:
(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:
让学生先进行思考,解答。然后同学说出怎样进行。
(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。
(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。
学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。
=; =.
2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。
答:单项式与多项式相乘的法则是,用单项式去乘多项式的每一项,再把所得的积相加。用式子表示为
多项式与多项式相乘的法则是,先用一个多项式的每一项乘以另一个多项式的每项,再把所得的积相加。用式子表示为
(a+b)(m+n)=am+an+bm+bn,
; 。
在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行。引入新课。
在进行时,也有一个与分式运算相比较的问题,有的时候,加上团式分解、约分等技巧,可以大大简化计算过程,这是要灵活运用的.因此,在本节学习时,可以适当结合11.1节的内容,复习一下在实数范围内分解因式的问题,如
这种变形不是原来意义上的因式分解,否则就无法进行到底了.可以说是借助因式分解的方法,或具体说成提出 ,等等.
数学二次根式教案 篇6
1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
1、重点:准确理解二次根式的概念,并能进行简单的计算。
学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。
(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
反思:
数学二次根式教案 篇7
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
例1(补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
∴ CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∴ ∠AFD=∠CBE.
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
数学二次根式教案 篇8
本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。
本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。
1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。
2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。
3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。
学生特点:实验班的A层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃, ,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。
教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。
鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:
(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:
让学生先进行思考,解答。然后同学说出怎样进行二次根式的混合运算。
(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。
(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。
学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。
数学二次根式教案 篇9
教学内容
二次根式的加减
教学目标
知识与技能目标:理解和掌握二次根式加减的方法.
过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
重难点关键
1.重点:二次根式化简为最简根式.
2.难点关键:会判定是否是最简二次根式.
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
自主检测、同伴互查
1、师生共同解决“学法”问题与13页“练习1”;
2、学生演板13页“练习2、3”。
四、知识梳理、师生共议
1、谈收获:
(1)二次根式的加减法则是什么?有哪些运算步骤?
(2)怎样合并被开方数相同的二次根式呢?
(3)二次根式进行加减运算时应注意什么问题?
2、说不足:。
五、作业训练、巩固提高
1、必做题:课本15页的“习题2、3”;
课时练习
1.揭示学法、自主学习
认真阅读课本14页内容,完成下列任务:
1、完成14页“例3、4”,先做再对照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的运算依据是什么?应注意什么问题?
(时间7分钟若有困难,与同伴讨论)
三、自主检测、同伴互查
1、师生共同解决“学法”问题;
2、学生演板14页“练习1、2”。
四、知识梳理、师生共议
1、谈收获:
(1)二次根式进行混合运算时运用了哪些知识?
(2)二次根式进行混合运算时应注意哪些问题?
数学二次根式教案 篇10
本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。“二次根式”是《课程标准》“数与代数”的重要内容。本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。
学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。
根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:
1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围
教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。
新课程标准指出:学生是学习的主体。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。
数学二次根式教案 篇11
1.理解分母有理化与除法的关系.
2.掌握二次根式的分母有理化.
3.通过二次根式的分母有理化,培养学生的运算能力.
三、重点、难点解决办法
二次根式混合运算的步骤、运算顺序、互为有理化因式.
例1 说出下列算式的运算步骤和顺序:
(1) (先乘除,后加减).
(2) (有括号,先去括号;不宜先进行括号内的运算).
(3)辨别有理化因式:
化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的`有理化因式的方法(依据分式的基本性质).
例如, 、 、 等式子的化简,如果分母是两个二次根式的和,应该怎样化简?
化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.
注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.
通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:
,现将分母有理化,就可以了.
,学生易发生如下错误,将式子变形为 ,而正确的做法是 .
1.强调二次根式混合运算的法则;
2.注意对有理化因式的概括并寻找出它的规律.
(1)如单独一项 的有理化因式就是它本身 .(2)如出现和、差形式的: 的有理化因式为 , 的有理数化因式为 .
数学二次根式教案 篇12
二次根式这节课的重点是了解二次根式的定义,会判断一个根式是不是二次根式,难点是二次根式成立的条件,和利用进行计算。
通过课前备学生,我了解到,学生接受起来并不是太顺利,所以,这一节课我进行了两块的内容,一是二次根式的定义,理解它并会用定义进行判断;二是二次根式成立的`条件,让学生掌握如何使二次根式有意义并会正确书写步骤。
接下来重点进行了确定二次根式中被开方数所含字母的取值范围这一知识点。
这里面要掌握一点,那就是若一个式子是二次根式,则它的被开方数一定是非负数,利用这一条件能确定二次根式中被开方数所含字母的取值范围。
特别的,含有分母的二次根式取值时易忽略分母不能为零这一条件。
由于取值范围的确定与不等式(组)有关,所以,在学习之前又进行了不等式的性质及解法进行了复习,因为前几天让学生复习过,且一直在温习,所以这一点学习并没有感觉到困难。
数学二次根式教案 篇13
初中数学《二次根式的运算》教案
一、教学目标
【知识与技能】掌握二次根式的运算法则,并能熟练进行二次根式的混合运算。
【过程与方法】通过引导,在多解中进行比较,寻求有效快捷的计算方法。
【情感态度与价值观】通过独立思考与小组合作讨论,培养良好的学习态度,并且注重培养类比思想。
二、教学重难点
【重点】混合运算的法则,明确三级运算的顺序。
【难点】灵活运用因式分解,约分等技巧使计算简便。
三、教学过程
(四)总结提高
这节课的学习过后,你收获了哪些?
二次根式的混合运算应注意什么?
作业:阅读与思考,海伦秦九韶公式,下节课分享感受。
四、板书设计
数学二次根式教案 篇14
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第3页――4页内容,完成下列任务:
1、请比较与0的大小,你得到的结论是:________________________。
2、完成3页“探究”中的填空,你得到的结论是____________________。
3、看例2是怎样利用性质进行计算的。
4、完成4页“探究”中的填空,你得到的结论是:____________________。
5 、看懂例3,有困难可与同伴交流或问老师。
教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)
数学二次根式教案 篇15
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
= ? (a≥0,b≥0); (b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
例1下列各式1) ,
其中是二次根式的是_________(填序号).
例4、已知:
A. ; B. - ; C. - ; D.
,其中a= ,b= .
例5、如图,实数 、在数轴上的位置,化简 :
当 时,①如果 ,则 ;②如果 ,则 。
当 时,①如果 ,则 ;②如果 ,则 。
通过分母有理化,利用分子的大小来比较。
通过分子有理化,利用分母的大小来比较。
适当选择介于两个数之间的媒介值,利用传递性进行比较。
(1)按照上述两个等式及其验证过程的基本思路,猜想 的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
二次根式的乘法课件通用4篇
二次根式的乘法课件 篇1

数学是一门需要严密推理和深入理解的学科。在高中数学课程中,二次根式的乘法是一个重要的概念,它需要学生熟练掌握相关的乘法法则和技巧。为了帮助学生更好地理解和掌握这一概念,我为大家准备了一份生动详细的二次根式的乘法课件。本文将具体介绍这份课件的内容,并提供一些习题和解析,希望能够对学生的学习和理解有所帮助。
第一部分:二次根式的基础知识
在开始介绍二次根式的乘法之前,我们首先需要了解二次根式的基础知识。在课件的第一部分,我会通过图文并茂的方式,详细介绍二次根式的定义、性质和简化方法。通过生动的例子和实际问题,我将帮助学生们理解什么是二次根式以及它们在实际生活中的应用。我还会提供一些练习题,让学生们通过实际操作巩固他们的理解。
第二部分:二次根式的乘法法则
在第一部分,学生们已经对二次根式有了一定的了解。在课件的第二部分,我会具体讲解二次根式的乘法法则。我会通过图表和示意图的方式,演示二次根式的乘法过程,帮助学生们理解乘法的原理。我还会分析不同情况下的乘法规则,并提供一些实例来帮助学生们巩固理解。
第三部分:习题解析与拓展
在课件的第三部分,我将提供一些习题,让学生们亲自动手进行练习。这些习题将涵盖二次根式的乘法运算,包括简单的乘法、合并同类项的乘法和与整数的乘法等。我将详细解答每个习题,并提供一些常见错误的解析,帮助学生们避免犯同样的错误。在最后的部分,我还将提供一些拓展题,让学生们通过解答更加复杂的问题,将所学的知识应用到更高层次的领域。
结尾:
通过这份生动详细的二次根式的乘法课件,我希望能够帮助学生们更好地理解和掌握这一概念。通过对二次根式基础知识的介绍、乘法法则的讲解以及习题的提供和解析,我相信学生们在这个课程中会有更加深入和全面的理解。希望这份课件能够对学生们的学习和提高有所帮助,并且能够激发学生们对数学的兴趣和热爱。让我们一起探索数学的美妙世界吧!
二次根式的乘法课件 篇2
引言:
数学中,二次根式是一种常见的数学表达式,在代数学、几何学和物理学等学科中都有广泛的应用。了解并掌握二次根式的乘法运算是学习这一知识点的重要一步。本课件将详细介绍二次根式的乘法,并通过生动的示例和实践演练帮助学生理解和掌握这一概念。
第一节:二次根式的乘法概念
1.1 什么是二次根式
二次根式是含有根号且指数为2的代数式,例如√3、2√5等。我们需要根据乘法法则去计算和简化这些表达式。
1.2 二次根式的乘法法则
根据二次根式的乘法法则,两个二次根式相乘时,可以直接相乘根号下的数,并将根号外的系数进行乘法运算。例如,(a√m)(b√n) = ab√(mn)。
第二节:简化二次根式的乘法
2.1 系数的乘法
当两个二次根式相乘时,首先需要将系数进行乘法运算。例如,2√3 × 3√2 = 6√6。
2.2 根号下数的乘法
其次,需要将根号下的数相乘。例如,√3 × √2 = √6。
2.3 总结
综合乘法法则的步骤,将系数和根号下的数相乘,得到最终的结果。例如,2√3 × 3√2 = 6√6。
第三节:生动示例与实践演练
3.1 生动示例
通过一个具体的生动示例引导学生理解二次根式的乘法。例如,计算(5√2)(7√3):
首先,计算系数的乘法:5 × 7 = 35。
其次,计算根号下数的乘法:√2 × √3 = √(2 × 3) = √6。
最后,将系数和根号下数相乘得到结果:35√6。
3.2 实践演练
为了帮助学生巩固所学知识,课件将提供一系列实践演练题,供学生课后练习。例如:
1) 计算√5 × √7。
2) 计算(2√3)(4√2)。
3) 计算(√6)^2。
第四节:应用案例
4.1 几何学中的应用
介绍二次根式的乘法在几何学中的应用,例如计算平方根的面积或周长等。
4.2 物理学中的应用
介绍二次根式的乘法在物理学中的应用,例如计算物体的速度、加速度等。
结语:
通过本课件的学习,学生们可以全面了解二次根式的乘法运算,并能够熟练运用乘法法则进行计算和简化。同时,通过生动的示例和实践演练,学生们可以更好地理解和掌握这一知识点,为进一步学习相关知识奠定基础。
二次根式的乘法课件 篇3
二次根式的乘法是数学中重要的概念之一,也是我们学习数学的基础。掌握了二次根式的乘法,我们不仅可以更好地理解和应用数学知识,还能在解决实际问题中发挥重要作用。本文将为大家介绍二次根式的乘法,并提供一份精美的课件,帮助大家更好地理解和掌握这一知识。
一、二次根式的定义
在数学中,二次根式指的是形如√a的根式,其中a为非负实数。二次根式有着广泛的应用,比如在几何、物理等领域的问题中经常会出现。掌握二次根式的乘法是非常重要的。
二、二次根式的乘法规则
1. 同底的二次根式乘法
当两个二次根式具有相同的底数时,可以通过将它们的指数相加,得出它们的乘积。
例如,√2 × √3 = √(2 × 3) = √6。
2. 不同底的二次根式乘法
当两个二次根式具有不同的底数时,可以通过将它们化为最简形式,再进行乘法运算。
例如,√2 × √8 = √(2 × 8) = √16 = 4。
3. 含有多个二次根式的乘法
当一个乘法式中含有多个二次根式时,我们可以将其分解为多个乘法式,再进行计算。
例如,(√2 + √3) × (√2 + √3) = √2 × √2 + √2 × √3 + √3 × √2 + √3 × √3 = 2 + √6 + √6 + 3 = 5 + 2√6。
三、二次根式的乘法课件设计
为了将二次根式的乘法教学内容更加生动、具体和易于理解,我们设计了一份课件,内容包括以下几个部分:
1. 二次根式的定义:通过举例和图示,详细介绍二次根式的概念和特点,让学生能够直观地理解。
2. 同底的二次根式乘法:通过具体例子演示,引导学生掌握同底二次根式乘法的规则。同时,设计了互动环节,供学生进行实际操作和练习。
3. 不同底的二次根式乘法:通过多个实例的讲解,展示不同底二次根式乘法的步骤和技巧,让学生能够熟练运用。
4. 含有多个二次根式的乘法:以图形形式展示多个二次根式的乘法,帮助学生更好地理解乘法过程。同时,设计了拆解和组合的练习题,提供给学生巩固知识和提高能力的机会。
课件还应包括复习和总结环节,帮助学生对所学内容进行回顾和梳理。同时,为了增加趣味性和吸引学生的注意力,可以加入一些游戏和小测试,并设立奖励机制,调动学生的积极性。
结语
通过对二次根式的乘法进行深入研究和讲解,我们可以更好地理解和应用这一知识。二次根式的乘法不仅是数学学科的基础,也对我们解决实际问题具有重要作用。我们需要通过课件等教学手段,以生动、具体的方式向学生传授这一知识。希望本文所提供的课件能够帮助大家更好地理解和掌握二次根式的乘法。
二次根式的乘法课件 篇4
《二次根式乘法》教案
一、教学目标
【知识与技能】掌握二次根式的乘法运算法则,能利用法则进行正确的运算。
【过程与方法】通过计算、观察、猜想的过程得到二次根式的乘法运算法则,并用逆向思维写出逆向等式及利用它们进行计算和化简。
【情感态度与价值观】通过二次根式乘法法则的探究过程,增强学数学、用数学的兴趣,创设探究式与合作交流的学习气氛。
二、教学重难点
【重点】会进行简单的二次根式的乘法运算。
【难点】二次根式的乘法与积的算术平方根的关系及应用。
三、教学过程
(一)导入新课
计算下列各式,观察计算结果,你能发现什么规律?
学生活动:计算、观察,分小组讨论。全班交流,体会结果的特点。
(指几名学生回答,其余学生补充)
(二)自主探索
(三)巩固应用,深化提升
(四)小结作业
本节课你学到了什么知识?你又什么认识?
四、板书设计